Gas mixture analysis by temperature-independent, multi-wavelength refractive mixing rules

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Journal of Chemical Thermodynamics Pub Date : 2025-02-25 DOI:10.1016/j.jct.2025.107473
J.B.S. Santos , H.A. Helfstein , M.T. Saita , F.T. Degasperi , R.B. Torres , E.A. Barbosa
{"title":"Gas mixture analysis by temperature-independent, multi-wavelength refractive mixing rules","authors":"J.B.S. Santos ,&nbsp;H.A. Helfstein ,&nbsp;M.T. Saita ,&nbsp;F.T. Degasperi ,&nbsp;R.B. Torres ,&nbsp;E.A. Barbosa","doi":"10.1016/j.jct.2025.107473","DOIUrl":null,"url":null,"abstract":"<div><div>The characterization of gaseous mixtures is an increasingly important issue in the fields of fuel analysis and aerosol research. Analyses by refractometry combined with refractive mixing rules are also powerful tools in this area. In this work a setup comprised by a six-laser interferometer and a vacuum system was projected and constructed in order to measure the refractivity of pure inert gases like N<sub>2</sub>, CO<sub>2</sub>, Ar and O<sub>2</sub> and to study the validity of the refractive mixing rules with binary mixtures of N<sub>2</sub> and Ar for different wavelengths. The light sources used in the experiments were a He<img>ne laser (632.8 nm), a frequency-doubled diode-pumped Nd:YAG laser (532 nm) and four diode lasers emitting at 406.4 nm, 453 nm, 655.3 nm and 825 nm. The experimental refractivity data of the binary mixtures were compared with the theoretical ones obtained from a modified, temperature invariant, Gladstone-dale based refractive mixing rule, by introducing the parameter thermal refractivity (TR). The results obtained by the modified refractive mixing rule proposed by us for dry air were also compared with the refractive measurements of atmospheric air for the six wavelengths. In general the experimental results have shown good agreement with the theoretical predictions, and the dispersive character of the thermal refractivities point out to promising applications in evaluating gas mixtures.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107473"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The characterization of gaseous mixtures is an increasingly important issue in the fields of fuel analysis and aerosol research. Analyses by refractometry combined with refractive mixing rules are also powerful tools in this area. In this work a setup comprised by a six-laser interferometer and a vacuum system was projected and constructed in order to measure the refractivity of pure inert gases like N2, CO2, Ar and O2 and to study the validity of the refractive mixing rules with binary mixtures of N2 and Ar for different wavelengths. The light sources used in the experiments were a Hene laser (632.8 nm), a frequency-doubled diode-pumped Nd:YAG laser (532 nm) and four diode lasers emitting at 406.4 nm, 453 nm, 655.3 nm and 825 nm. The experimental refractivity data of the binary mixtures were compared with the theoretical ones obtained from a modified, temperature invariant, Gladstone-dale based refractive mixing rule, by introducing the parameter thermal refractivity (TR). The results obtained by the modified refractive mixing rule proposed by us for dry air were also compared with the refractive measurements of atmospheric air for the six wavelengths. In general the experimental results have shown good agreement with the theoretical predictions, and the dispersive character of the thermal refractivities point out to promising applications in evaluating gas mixtures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
期刊最新文献
Gas mixture analysis by temperature-independent, multi-wavelength refractive mixing rules Solid-liquid equilibrium of abscisic acid in twelve pure solvents: Experiments, modeling, and molecular simulation Phase transition thermodynamics of organic semiconductors N,N,N′,N′-tetraphenyl-p-phenylenediamine, N,N′-diphenyl-N,N′-di-p-tolylbenzene-1,4-diamine, and 4,4′-bis(m-tolylphenylamino)biphenyl Thermodynamic properties and thermodynamic modelling for aqueous mixed system containing sodium tetraborate and sodium pentaborate Solubility determination, correlation, solvent effect and thermodynamic properties of tolnaftate in ten mono-solvents and binary solvent systems from 283.15 K to 328.15 K
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1