{"title":"Gas mixture analysis by temperature-independent, multi-wavelength refractive mixing rules","authors":"J.B.S. Santos , H.A. Helfstein , M.T. Saita , F.T. Degasperi , R.B. Torres , E.A. Barbosa","doi":"10.1016/j.jct.2025.107473","DOIUrl":null,"url":null,"abstract":"<div><div>The characterization of gaseous mixtures is an increasingly important issue in the fields of fuel analysis and aerosol research. Analyses by refractometry combined with refractive mixing rules are also powerful tools in this area. In this work a setup comprised by a six-laser interferometer and a vacuum system was projected and constructed in order to measure the refractivity of pure inert gases like N<sub>2</sub>, CO<sub>2</sub>, Ar and O<sub>2</sub> and to study the validity of the refractive mixing rules with binary mixtures of N<sub>2</sub> and Ar for different wavelengths. The light sources used in the experiments were a He<img>ne laser (632.8 nm), a frequency-doubled diode-pumped Nd:YAG laser (532 nm) and four diode lasers emitting at 406.4 nm, 453 nm, 655.3 nm and 825 nm. The experimental refractivity data of the binary mixtures were compared with the theoretical ones obtained from a modified, temperature invariant, Gladstone-dale based refractive mixing rule, by introducing the parameter thermal refractivity (TR). The results obtained by the modified refractive mixing rule proposed by us for dry air were also compared with the refractive measurements of atmospheric air for the six wavelengths. In general the experimental results have shown good agreement with the theoretical predictions, and the dispersive character of the thermal refractivities point out to promising applications in evaluating gas mixtures.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"206 ","pages":"Article 107473"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000278","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The characterization of gaseous mixtures is an increasingly important issue in the fields of fuel analysis and aerosol research. Analyses by refractometry combined with refractive mixing rules are also powerful tools in this area. In this work a setup comprised by a six-laser interferometer and a vacuum system was projected and constructed in order to measure the refractivity of pure inert gases like N2, CO2, Ar and O2 and to study the validity of the refractive mixing rules with binary mixtures of N2 and Ar for different wavelengths. The light sources used in the experiments were a Hene laser (632.8 nm), a frequency-doubled diode-pumped Nd:YAG laser (532 nm) and four diode lasers emitting at 406.4 nm, 453 nm, 655.3 nm and 825 nm. The experimental refractivity data of the binary mixtures were compared with the theoretical ones obtained from a modified, temperature invariant, Gladstone-dale based refractive mixing rule, by introducing the parameter thermal refractivity (TR). The results obtained by the modified refractive mixing rule proposed by us for dry air were also compared with the refractive measurements of atmospheric air for the six wavelengths. In general the experimental results have shown good agreement with the theoretical predictions, and the dispersive character of the thermal refractivities point out to promising applications in evaluating gas mixtures.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.