Microstructure informatics: Using computer vision for the characterization of dendrite growth phenomena in Ni-base single crystal Superalloys

IF 4.8 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Characterization Pub Date : 2025-02-25 DOI:10.1016/j.matchar.2025.114878
A.R. Richter , F. Scholz , G. Eggeler , J. Frenzel , P. Thome
{"title":"Microstructure informatics: Using computer vision for the characterization of dendrite growth phenomena in Ni-base single crystal Superalloys","authors":"A.R. Richter ,&nbsp;F. Scholz ,&nbsp;G. Eggeler ,&nbsp;J. Frenzel ,&nbsp;P. Thome","doi":"10.1016/j.matchar.2025.114878","DOIUrl":null,"url":null,"abstract":"<div><div>Microstructure informatics, an emerging field, combines traditional quantitative metallography with computer vision, algorithmic geometry and data science. It uses automated procedures to retrieve statistically relevant information from micrographs. Its power is demonstrated in a case study which focusses on competitive dendrite growth during directional solidification of single crystal Ni-base superalloys (SXs) in 3D. We show how microstructure informatics allows to follow the evolution of all dendrites in a cylindric SX bar (diameter: 12 mm, analyzed length: 76 mm), evaluating serial cross sections taken in 1 mm distances. The method presented in this work relies on three basic components: (1) A deep learning object detection network for detecting dendrite core positions. (2) A 3D image reconstruction routine for tracing dendrite paths and (3) a relational geometric ontological (RGO) database, documenting all relevant relationships between individual dendrites. The method allows to characterize crystal mosaicity, individual dendrite growth directions, interactions between dendrites and dendrite deformation. The performance of different deep learning classification architectures (AlexNet, GoogleNet and MobileNetV2) in combination with a YOLOv2 subdetection network is investigated. The network hyper parameters were optimized to achieve detection rates &gt;99 %. A resulting ontological database of 16,631 individual dendrites provides a foundation for further automatic quantitative microstructural characterization.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"223 ","pages":"Article 114878"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044580325001676","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure informatics, an emerging field, combines traditional quantitative metallography with computer vision, algorithmic geometry and data science. It uses automated procedures to retrieve statistically relevant information from micrographs. Its power is demonstrated in a case study which focusses on competitive dendrite growth during directional solidification of single crystal Ni-base superalloys (SXs) in 3D. We show how microstructure informatics allows to follow the evolution of all dendrites in a cylindric SX bar (diameter: 12 mm, analyzed length: 76 mm), evaluating serial cross sections taken in 1 mm distances. The method presented in this work relies on three basic components: (1) A deep learning object detection network for detecting dendrite core positions. (2) A 3D image reconstruction routine for tracing dendrite paths and (3) a relational geometric ontological (RGO) database, documenting all relevant relationships between individual dendrites. The method allows to characterize crystal mosaicity, individual dendrite growth directions, interactions between dendrites and dendrite deformation. The performance of different deep learning classification architectures (AlexNet, GoogleNet and MobileNetV2) in combination with a YOLOv2 subdetection network is investigated. The network hyper parameters were optimized to achieve detection rates >99 %. A resulting ontological database of 16,631 individual dendrites provides a foundation for further automatic quantitative microstructural characterization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显微组织信息学是一个新兴领域,它将传统的定量金相学与计算机视觉、算法几何和数据科学相结合。它使用自动程序从显微照片中检索统计相关信息。我们在一个案例研究中展示了它的威力,该案例研究的重点是单晶镍基超合金 (SX) 在三维定向凝固过程中树枝状晶的竞争性生长。我们展示了微观结构信息学如何跟踪圆柱形 SX 棒(直径:12 毫米,分析长度:76 毫米)中所有枝晶的演变过程,评估以 1 毫米间距拍摄的序列横截面。这项工作中提出的方法依赖于三个基本组成部分:(1) 深度学习对象检测网络,用于检测树突核位置。(2)用于追踪树枝状突起路径的三维图像重建程序;(3)记录单个树枝状突起之间所有相关关系的关系几何本体(RGO)数据库。该方法可以描述晶体镶嵌性、单个树突的生长方向、树突之间的相互作用以及树突变形。研究了不同深度学习分类架构(AlexNet、GoogleNet 和 MobileNetV2)与 YOLOv2 子检测网络相结合的性能。对网络超参数进行了优化,以达到 99% 的检测率。由此产生的包含 16631 个树突的本体数据库为进一步的自动定量微结构表征奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Characterization
Materials Characterization 工程技术-材料科学:表征与测试
CiteScore
7.60
自引率
8.50%
发文量
746
审稿时长
36 days
期刊介绍: Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials. The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal. The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include: Metals & Alloys Ceramics Nanomaterials Biomedical materials Optical materials Composites Natural Materials.
期刊最新文献
Achieving ultra-high strength, good toughness and cost reduction in secondary hardening steel via dual precipitation High thermal stability of Si-containing Al-Zn-Mg-Cu crossover alloy caused by metastable GPB-II phase Strengthening magnetic and corrosion performances of NdFeB magnets via grain boundary diffusion with Tb element Microstructural evolution of NiCoCrMo medium-entropy alloy and its corrosion resistance in hydrofluoric acid Microstructure informatics: Using computer vision for the characterization of dendrite growth phenomena in Ni-base single crystal Superalloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1