Yunhong Shi , Chengjiang Li , Honglei Wang , Xiaolin Wang , Michael Negnevitsky
{"title":"A novel scheduling strategy of a hybrid wind-solar-hydro system for smoothing energy and power fluctuations","authors":"Yunhong Shi , Chengjiang Li , Honglei Wang , Xiaolin Wang , Michael Negnevitsky","doi":"10.1016/j.energy.2025.135268","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid wind-solar-hydro-storage system integrates multiple uncertain renewable energy sources and storage systems to maximize outputs and stability in modern power systems. However, the challenge of differentiated fluctuations presented by renewable energy generation across different time scales degrades the system operation performance. This study constructed a hybrid system including wind, photovoltaic, and cascade hydropower plants, and a multi-objective coordinative scheduling strategy, to smooth energy and power fluctuations. Strategies are explored using a collaborative operation mode with grouped energy storage to address uncertain power deviations during real-time adjustments within a day. The strategy can effectively optimize the internal load distribution of energy routers, avoiding up to 15.17 % of unnecessary operational fluctuations in day-ahead scheduling and reducing the fluctuation mitigation potential by up to 27,6 %. Additionally, it achieves up to 64.69 % reduction in profound operational fluctuations. The load-side flexibility mechanism enhances economic efficiency by up to 11.26 %. Furthermore, the strategy increases the risk coverage ratio while reducing the failure amount and frequency of daily power fluctuation suppression by 96.91 % and 94.44 %. The proposed strategy provides an effective solution for large hybrid systems to smooth energy and power fluctuations, while also delivering ecological and navigational benefits alongside significantly stabilized operations.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135268"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225009107","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid wind-solar-hydro-storage system integrates multiple uncertain renewable energy sources and storage systems to maximize outputs and stability in modern power systems. However, the challenge of differentiated fluctuations presented by renewable energy generation across different time scales degrades the system operation performance. This study constructed a hybrid system including wind, photovoltaic, and cascade hydropower plants, and a multi-objective coordinative scheduling strategy, to smooth energy and power fluctuations. Strategies are explored using a collaborative operation mode with grouped energy storage to address uncertain power deviations during real-time adjustments within a day. The strategy can effectively optimize the internal load distribution of energy routers, avoiding up to 15.17 % of unnecessary operational fluctuations in day-ahead scheduling and reducing the fluctuation mitigation potential by up to 27,6 %. Additionally, it achieves up to 64.69 % reduction in profound operational fluctuations. The load-side flexibility mechanism enhances economic efficiency by up to 11.26 %. Furthermore, the strategy increases the risk coverage ratio while reducing the failure amount and frequency of daily power fluctuation suppression by 96.91 % and 94.44 %. The proposed strategy provides an effective solution for large hybrid systems to smooth energy and power fluctuations, while also delivering ecological and navigational benefits alongside significantly stabilized operations.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.