Lei Ren , Hong Shi , Yifang Yang , Jianzhe Liu , Xunmin Ou
{"title":"Carbon reduction cost of hydrogen steelmaking technology in China","authors":"Lei Ren , Hong Shi , Yifang Yang , Jianzhe Liu , Xunmin Ou","doi":"10.1016/j.energy.2025.135177","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen energy is a key deep de-carbonization technology option for steel production. This study aims to provide a reference for the selection of technological routes by conducting a fair comparison with the evaluation of other deep de-carbonization technologies, such as scrap-based electric arc furnace (EAF) steelmaking, under the same research framework. This study updates the direct/indirect GHG emissions and steelmaking costs of blast furnace-basic oxygen furnace (BF-BOF), scrap-based EAF, fossil fuel-based direct reduced iron (DRI), hydrogen steelmaking, and CCS technologies in China. Using the H-DR (part) process can only achieve a 43.4 % reduction compared to BF-BOF, while the H-DR (full) process results in GHG emissions comparable to scrap-EAF. The study also discusses the unit abatement costs of hydrogen steelmaking technology compared to other emission reduction technologies. The cost of H-DR (full) is 6186 RMB/tcs, which is twice that of BF-BOF and 1.3 times that of scrap-EAF. The main conclusions are that green hydrogen steelmaking is expected to achieve near-zero emissions and can complement scrap-based EAF. The abatement costs of pure hydrogen steelmaking are relatively high, but by using partial hydrogen or by-product hydrogen, the abatement costs can be reduced to the level of scrap-based EAF.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"320 ","pages":"Article 135177"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225008199","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen energy is a key deep de-carbonization technology option for steel production. This study aims to provide a reference for the selection of technological routes by conducting a fair comparison with the evaluation of other deep de-carbonization technologies, such as scrap-based electric arc furnace (EAF) steelmaking, under the same research framework. This study updates the direct/indirect GHG emissions and steelmaking costs of blast furnace-basic oxygen furnace (BF-BOF), scrap-based EAF, fossil fuel-based direct reduced iron (DRI), hydrogen steelmaking, and CCS technologies in China. Using the H-DR (part) process can only achieve a 43.4 % reduction compared to BF-BOF, while the H-DR (full) process results in GHG emissions comparable to scrap-EAF. The study also discusses the unit abatement costs of hydrogen steelmaking technology compared to other emission reduction technologies. The cost of H-DR (full) is 6186 RMB/tcs, which is twice that of BF-BOF and 1.3 times that of scrap-EAF. The main conclusions are that green hydrogen steelmaking is expected to achieve near-zero emissions and can complement scrap-based EAF. The abatement costs of pure hydrogen steelmaking are relatively high, but by using partial hydrogen or by-product hydrogen, the abatement costs can be reduced to the level of scrap-based EAF.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.