A 1.62 – 10-Gb/s CDR Using Wide-Range VCO With Linearized KVCO

IF 4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems II: Express Briefs Pub Date : 2025-01-24 DOI:10.1109/TCSII.2025.3532628
Dong-Seob Shin;Young-Chan Jang
{"title":"A 1.62 – 10-Gb/s CDR Using Wide-Range VCO With Linearized KVCO","authors":"Dong-Seob Shin;Young-Chan Jang","doi":"10.1109/TCSII.2025.3532628","DOIUrl":null,"url":null,"abstract":"A clock and data recovery (CDR) with a voltage-controlled oscillator (VCO) calibration circuit is proposed for supporting transmission speeds from 1.62 Gbps to 10 Gbps. It has a dual-loop structure for frequency and phase locking while using a VCO based on a ring oscillator to support a wide operating range. The VCO calibration circuitry ensures that the VCO’s gain, kVCO, is set within a consistent range over a wide data rate by adaptively setting the operating frequency range of the VCO based on the frequency of the incoming training pattern. The proposed CDR is implemented by using a 40-nm CMOS process with a voltage supply of 1.2 V. It occupies the area of 0.08mm2 while having power efficiency of 2.5 pJ/bit. The proposed CDR improved the peak-to-peak time jitter of the recovered clock from 51.1ps to 31.25ps at the data rate of 8.1 Gbps by using the VCO calibration circuit. The proposed VCO calibration for the CDR also reduced the distribution of the peak-to-peak time jitter of the recovered clocks between the evaluated chips by 44%.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"72 3","pages":"474-478"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10852518/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A clock and data recovery (CDR) with a voltage-controlled oscillator (VCO) calibration circuit is proposed for supporting transmission speeds from 1.62 Gbps to 10 Gbps. It has a dual-loop structure for frequency and phase locking while using a VCO based on a ring oscillator to support a wide operating range. The VCO calibration circuitry ensures that the VCO’s gain, kVCO, is set within a consistent range over a wide data rate by adaptively setting the operating frequency range of the VCO based on the frequency of the incoming training pattern. The proposed CDR is implemented by using a 40-nm CMOS process with a voltage supply of 1.2 V. It occupies the area of 0.08mm2 while having power efficiency of 2.5 pJ/bit. The proposed CDR improved the peak-to-peak time jitter of the recovered clock from 51.1ps to 31.25ps at the data rate of 8.1 Gbps by using the VCO calibration circuit. The proposed VCO calibration for the CDR also reduced the distribution of the peak-to-peak time jitter of the recovered clocks between the evaluated chips by 44%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Fifteen-minute consultation: Management of primary headaches in children.
IF 1 4区 医学Archives of Disease in Childhood-Education and Practice EditionPub Date : 2024-05-17 DOI: 10.1136/archdischild-2022-324085
Roqiah Alhashem, Susan Byrne, Dani Hall, Daniel E Lumsden, Prab Prabhakar
Management of raised intracranial pressure in children
IF 5.3 2区 医学Intensive and Critical Care NursingPub Date : 2000-10-01 DOI: 10.1054/iccn.2000.1511
Joanne Palmer
Fifteen-minute consultation: Emergency management of tracheostomy problems in children.
IF 1 4区 医学Archives of Disease in Childhood-Education and Practice EditionPub Date : 2019-08-01 DOI: 10.1136/archdischild-2018-316099
Elizabeth Ross, Kate Stephenson
来源期刊
IEEE Transactions on Circuits and Systems II: Express Briefs
IEEE Transactions on Circuits and Systems II: Express Briefs 工程技术-工程:电子与电气
CiteScore
7.90
自引率
20.50%
发文量
883
审稿时长
3.0 months
期刊介绍: TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: Circuits: Analog, Digital and Mixed Signal Circuits and Systems Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic Circuits and Systems, Power Electronics and Systems Software for Analog-and-Logic Circuits and Systems Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Transactions on Circuits and Systems--II: Express Briefs Publication Information IEEE Circuits and Systems Society Information A 400-Mbps 1.05 pJ/Bit IR-UWB Transmitter for High-Density Neural Recording Systems Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1