Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2025-02-26 DOI:10.1007/s11705-025-2529-2
Mariia E. Markova, Antonina A. Stepacheva, Alexey V. Bykov, Yurii V. Larichev, Valentin Y. Doluda, Mikhail G. Sulman, Lioubov Kiwi-Minsker
{"title":"Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst","authors":"Mariia E. Markova,&nbsp;Antonina A. Stepacheva,&nbsp;Alexey V. Bykov,&nbsp;Yurii V. Larichev,&nbsp;Valentin Y. Doluda,&nbsp;Mikhail G. Sulman,&nbsp;Lioubov Kiwi-Minsker","doi":"10.1007/s11705-025-2529-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, Fe/Ru-catalyst supported on hyper-crosslinked polystyrene (HPS) synthesized via hydrothermal deposition was proposed for the Fischer-Tropsch synthesis (FTS) to obtain a high yield of gasoline-ranged hydrocarbons. According to the characterization results, the obtained monometallic 2%Fe-HPS catalyst contains Fe<sub>3</sub>O<sub>4</sub> particles with a multimodal distribution (mean particle size of 11, 30, and 45 nm). The addition of Ru leads to a decrease in the particle size with a narrower distribution (ca. 5 nm). Ru was shown to serve as a nucleating agent for Fe<sub>3</sub>O<sub>4</sub> crystalline since it has a higher affinity to the HPS surface and strongly anchors to the benzene rings of the polymer. This prevents a leaching of the active phase from the support increasing the catalyst stability. Ru addition also brings supplemental sites for CO and H<sub>2</sub> chemisorption resulting in 1.5-fold increased activity in FTS reaction compared to monometallic 2%Fe-HPS composite. 2%Fe-1%Ru-HPS composite showed ∼20% higher selectivity toward the formation of C<sub>5</sub>–C<sub>11</sub> alkanes at about 30% conversion of CO in comparison with monometallic one. Moreover, the branched hydrocarbons with a selectivity of approximately 17.5 mol% were observed in the FTS products in the presence of a 2%Fe-1%Ru-HPS catalyst.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 4","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2529-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, Fe/Ru-catalyst supported on hyper-crosslinked polystyrene (HPS) synthesized via hydrothermal deposition was proposed for the Fischer-Tropsch synthesis (FTS) to obtain a high yield of gasoline-ranged hydrocarbons. According to the characterization results, the obtained monometallic 2%Fe-HPS catalyst contains Fe3O4 particles with a multimodal distribution (mean particle size of 11, 30, and 45 nm). The addition of Ru leads to a decrease in the particle size with a narrower distribution (ca. 5 nm). Ru was shown to serve as a nucleating agent for Fe3O4 crystalline since it has a higher affinity to the HPS surface and strongly anchors to the benzene rings of the polymer. This prevents a leaching of the active phase from the support increasing the catalyst stability. Ru addition also brings supplemental sites for CO and H2 chemisorption resulting in 1.5-fold increased activity in FTS reaction compared to monometallic 2%Fe-HPS composite. 2%Fe-1%Ru-HPS composite showed ∼20% higher selectivity toward the formation of C5–C11 alkanes at about 30% conversion of CO in comparison with monometallic one. Moreover, the branched hydrocarbons with a selectivity of approximately 17.5 mol% were observed in the FTS products in the presence of a 2%Fe-1%Ru-HPS catalyst.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Nitrogen-enriched pyrolysis and catalytic pyrolysis of municipal sludge extract Preparation of TiO2@MCC modified PA6 composite membranes and their water-oil separation performance Fe/Ru synthesized by hydrothermal deposition on hyper-crosslinked polystyrene as promising Fischer-Tropsch catalyst Selective C–C coupling via copper atom reconfiguration in CO2 electroreduction Developing indium-oxide based catalysts for efficient hydrogenation of carbon dioxide to methanol: a mini-review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1