Han Han, Bi-Te Chen, Yang Liu, Liang Qi, Lei Xing, Hui Wang, Min Zhao, Chen Zhang, Ping Yu, Ning Wei, Jing Wang, Fang Zhou, Guang-Ji Wang, Xian-Wu Cheng, Zhang-Jian Huang, Ling Li, Hu-Lin Jiang
{"title":"Engineered Stem Cell Booster Breaks Pathological Barriers to Treat Chronic Pancreatitis.","authors":"Han Han, Bi-Te Chen, Yang Liu, Liang Qi, Lei Xing, Hui Wang, Min Zhao, Chen Zhang, Ping Yu, Ning Wei, Jing Wang, Fang Zhou, Guang-Ji Wang, Xian-Wu Cheng, Zhang-Jian Huang, Ling Li, Hu-Lin Jiang","doi":"10.1002/adma.202416261","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic pancreatitis (CP) is a long-standing progressive fibrosis and has long been considered incurable, which remains a heavy health burden worldwide. Mesenchymal stem cells (MSCs) with anti-fibrosis properties are currently used in the treatment of fibroinflammatory diseases. However, its therapeutic effect is limited mainly due to two main types of pathological barriers in CP: 1) Fibrotic collagen hinders cell delivery, and 2) Malignant microenvironment attacks cell inactivation. Here, a MSCs-based exogenous nitric oxide (NO) delivery system (MSCs-Lip@RNO) is constructed. In the MSCs-Lip@RNO, NO not only can be a cell booster to regulate collagen fibers, relieve the vascular compression and enhance the accumulation of MSCs in the whole pancreas, but also can form a protective gas layer on the cell surface, which enhances the therapeutic effect of MSCs. In the CP rat model, the pancreatic injury and fibrosis are reduced with 7 days after a single dose administration of this long-acting MSCs. Collectively, this study offers a promising strategy for enhancing the delivery and therapeutic efficacy of MSCs to break pathological barriers in CP treatment.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2416261"},"PeriodicalIF":27.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416261","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic pancreatitis (CP) is a long-standing progressive fibrosis and has long been considered incurable, which remains a heavy health burden worldwide. Mesenchymal stem cells (MSCs) with anti-fibrosis properties are currently used in the treatment of fibroinflammatory diseases. However, its therapeutic effect is limited mainly due to two main types of pathological barriers in CP: 1) Fibrotic collagen hinders cell delivery, and 2) Malignant microenvironment attacks cell inactivation. Here, a MSCs-based exogenous nitric oxide (NO) delivery system (MSCs-Lip@RNO) is constructed. In the MSCs-Lip@RNO, NO not only can be a cell booster to regulate collagen fibers, relieve the vascular compression and enhance the accumulation of MSCs in the whole pancreas, but also can form a protective gas layer on the cell surface, which enhances the therapeutic effect of MSCs. In the CP rat model, the pancreatic injury and fibrosis are reduced with 7 days after a single dose administration of this long-acting MSCs. Collectively, this study offers a promising strategy for enhancing the delivery and therapeutic efficacy of MSCs to break pathological barriers in CP treatment.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.