Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.1177/11779322251316130
Thanh Tuoi Le, Xuan Tho Dang
{"title":"Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.","authors":"Thanh Tuoi Le, Xuan Tho Dang","doi":"10.1177/11779322251316130","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying interactions between transcription factors (TFs) and target genes is crucial for understanding the molecular mechanisms involved in biological processes and diseases. Traditional biological experiments used to determine these interactions are often time-consuming, costly, and limited in scale. Current computational methods mainly predict binding sites rather than direct interactions. Although recent studies have achieved high performance in predicting TF-target gene associations, they still face a significant challenge related to constructing a robust dataset of positive and negative samples. Currently, methods do not adequately focus on selecting negative samples, resulting in incomplete coverage of potential TF-target gene relationships. This article proposes a method to select enhanced negative samples to improve the prediction performance of TF-target gene interactions. Experimental results show that the proposed method achieves an average area under the curve (AUC) value of 0.9024 ± 0.0008 through 5-fold cross-validation. These results demonstrate the model's high efficiency and accuracy, confirming its potential application in predicting TF-target gene interactions across various datasets and paving the way for large-scale biomedical research.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"19 ","pages":"11779322251316130"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11863233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322251316130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying interactions between transcription factors (TFs) and target genes is crucial for understanding the molecular mechanisms involved in biological processes and diseases. Traditional biological experiments used to determine these interactions are often time-consuming, costly, and limited in scale. Current computational methods mainly predict binding sites rather than direct interactions. Although recent studies have achieved high performance in predicting TF-target gene associations, they still face a significant challenge related to constructing a robust dataset of positive and negative samples. Currently, methods do not adequately focus on selecting negative samples, resulting in incomplete coverage of potential TF-target gene relationships. This article proposes a method to select enhanced negative samples to improve the prediction performance of TF-target gene interactions. Experimental results show that the proposed method achieves an average area under the curve (AUC) value of 0.9024 ± 0.0008 through 5-fold cross-validation. These results demonstrate the model's high efficiency and accuracy, confirming its potential application in predicting TF-target gene interactions across various datasets and paving the way for large-scale biomedical research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Gene Set Enrichment Analysis in Zebrafish Embryos Is Susceptible to False-Positive Results in the Absence of Differentially Expressed Genes. Computational Development of Transmission-Blocking Vaccine Candidates Based on Fused Antigens of Pre- and Post-fertilization Gametocytes Against Plasmodium falciparum. Bioinformatics-Driven Investigations of Signature Biomarkers for Triple-Negative Breast Cancer. A "Dock-Work" Orange: A Dual-Receptor Biochemical Theory on the Deterrence Induced by Citrusy Aroma on Elephant Traffic Central to a Conservation Effort. Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1