Gene Set Enrichment Analysis in Zebrafish Embryos Is Susceptible to False-Positive Results in the Absence of Differentially Expressed Genes.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS Bioinformatics and Biology Insights Pub Date : 2025-03-04 eCollection Date: 2025-01-01 DOI:10.1177/11779322251321071
John Dh Stead, Hyojin Lee, Andrew Williams, Sergio A Cortés Ramírez, Ella Atlas, Jan A Mennigen, Jason M O'Brien, Carole Yauk
{"title":"Gene Set Enrichment Analysis in Zebrafish Embryos Is Susceptible to False-Positive Results in the Absence of Differentially Expressed Genes.","authors":"John Dh Stead, Hyojin Lee, Andrew Williams, Sergio A Cortés Ramírez, Ella Atlas, Jan A Mennigen, Jason M O'Brien, Carole Yauk","doi":"10.1177/11779322251321071","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput gene expression studies commonly employ pathway analyses to infer biological meaning from lists of differentially expressed genes (DEGs). In toxicology and pharmacology studies, treatment groups are analysed against vehicle controls to identify DEGs and altered pathways. Previously, we empirically quantified false-positive rates of DEGs in gene expression data from pools of vehicle-treated zebrafish embryos to determine appropriate study designs (sample and pool size). Here, the same data were subject to Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) to identify false-positive enriched pathways. As expected, the number of false-positive ORA results was lowest where pool and sample sizes were largest (conditions which also generated the fewest significant DEGs). In contrast, the frequency of GSEA false-positives generated through the fast GSEA (fgsea) algorithm increased with pool and sample size and was highest for simulations that generated 0 DEGs, with ribosomal gene sets significantly enriched with the highest frequency. We describe 2 distinct mechanisms by which GSEA generated these false-positive results, both of which are most likely to generate significant gene sets under conditions where expression differences are particularly low. Finally, GSEA analyses were repeated using 1 alternative GSEA algorithm (CERNO) and 11 different ranking statistics. In almost every analysis, the number of significant results was highest where pool size was highest, with ribosome as the more frequently enriched gene set, suggesting our observations to be generalizable to different implementations of GSEA. These results from zebrafish embryos suggest caution in interpreting any GSEA results in contrasts where there are no DEGs.</p>","PeriodicalId":9065,"journal":{"name":"Bioinformatics and Biology Insights","volume":"19 ","pages":"11779322251321071"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics and Biology Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11779322251321071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput gene expression studies commonly employ pathway analyses to infer biological meaning from lists of differentially expressed genes (DEGs). In toxicology and pharmacology studies, treatment groups are analysed against vehicle controls to identify DEGs and altered pathways. Previously, we empirically quantified false-positive rates of DEGs in gene expression data from pools of vehicle-treated zebrafish embryos to determine appropriate study designs (sample and pool size). Here, the same data were subject to Over-Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) to identify false-positive enriched pathways. As expected, the number of false-positive ORA results was lowest where pool and sample sizes were largest (conditions which also generated the fewest significant DEGs). In contrast, the frequency of GSEA false-positives generated through the fast GSEA (fgsea) algorithm increased with pool and sample size and was highest for simulations that generated 0 DEGs, with ribosomal gene sets significantly enriched with the highest frequency. We describe 2 distinct mechanisms by which GSEA generated these false-positive results, both of which are most likely to generate significant gene sets under conditions where expression differences are particularly low. Finally, GSEA analyses were repeated using 1 alternative GSEA algorithm (CERNO) and 11 different ranking statistics. In almost every analysis, the number of significant results was highest where pool size was highest, with ribosome as the more frequently enriched gene set, suggesting our observations to be generalizable to different implementations of GSEA. These results from zebrafish embryos suggest caution in interpreting any GSEA results in contrasts where there are no DEGs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinformatics and Biology Insights
Bioinformatics and Biology Insights BIOCHEMICAL RESEARCH METHODS-
CiteScore
6.80
自引率
1.70%
发文量
36
审稿时长
8 weeks
期刊介绍: Bioinformatics and Biology Insights is an open access, peer-reviewed journal that considers articles on bioinformatics methods and their applications which must pertain to biological insights. All papers should be easily amenable to biologists and as such help bridge the gap between theories and applications.
期刊最新文献
Gene Set Enrichment Analysis in Zebrafish Embryos Is Susceptible to False-Positive Results in the Absence of Differentially Expressed Genes. Computational Development of Transmission-Blocking Vaccine Candidates Based on Fused Antigens of Pre- and Post-fertilization Gametocytes Against Plasmodium falciparum. Bioinformatics-Driven Investigations of Signature Biomarkers for Triple-Negative Breast Cancer. A "Dock-Work" Orange: A Dual-Receptor Biochemical Theory on the Deterrence Induced by Citrusy Aroma on Elephant Traffic Central to a Conservation Effort. Predicting TF-Target Gene Association Using a Heterogeneous Network and Enhanced Negative Sampling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1