Dorota Bielińska-Wąż, Piotr Wąż, Agata Błaczkowska
{"title":"20D-Dynamic Representation of Protein Sequences Combined with K-means Clustering.","authors":"Dorota Bielińska-Wąż, Piotr Wąż, Agata Błaczkowska","doi":"10.2174/0113862073359729250220131623","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this research is to demonstrate that alignment-free bioinformatics approaches are effective tools for analyzing the similarity and dissimilarity of protein sequences. All numerical parameters representing sequences are expressed analytically, ensuring precision, clarity, and efficient processing, even for large datasets and long sequences. Additionally, a novel approach for identifying previously unknown virus strains is introduced.</p><p><strong>Methods: </strong>A novel approach is proposed, integrating the unique features of our newly developed method, the 20D-Dynamic Representation of Protein Sequences, with the K-means clustering algorithm. The sequences are represented as clouds of material points in a 20-dimensional space (20D-dynamic graphs), with their spatial distribution being unique to each protein sequence. The numerical parameters, referred to as descriptors in molecular similarity theory, represent quantities characteristic of dynamic systems and serve as input data for the K-means clustering algorithm.</p><p><strong>Results: </strong>Examples of the application of the approach are presented, including projections of the 20D-dynamic graphs onto 3D spaces, which serve as a visual tool for comparing sequences. Additionally, cluster plots for the analyzed sequences are provided using the proposed method.</p><p><strong>Conclusion: </strong>It has been demonstrated that the 20D-Dynamic Representation of Protein Sequences, combined with the K-means clustering algorithm, successfully classifies subtypes of influenza A virus strains.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073359729250220131623","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The objective of this research is to demonstrate that alignment-free bioinformatics approaches are effective tools for analyzing the similarity and dissimilarity of protein sequences. All numerical parameters representing sequences are expressed analytically, ensuring precision, clarity, and efficient processing, even for large datasets and long sequences. Additionally, a novel approach for identifying previously unknown virus strains is introduced.
Methods: A novel approach is proposed, integrating the unique features of our newly developed method, the 20D-Dynamic Representation of Protein Sequences, with the K-means clustering algorithm. The sequences are represented as clouds of material points in a 20-dimensional space (20D-dynamic graphs), with their spatial distribution being unique to each protein sequence. The numerical parameters, referred to as descriptors in molecular similarity theory, represent quantities characteristic of dynamic systems and serve as input data for the K-means clustering algorithm.
Results: Examples of the application of the approach are presented, including projections of the 20D-dynamic graphs onto 3D spaces, which serve as a visual tool for comparing sequences. Additionally, cluster plots for the analyzed sequences are provided using the proposed method.
Conclusion: It has been demonstrated that the 20D-Dynamic Representation of Protein Sequences, combined with the K-means clustering algorithm, successfully classifies subtypes of influenza A virus strains.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.