Computational Study for Preparation of Benzoimidazo[1,2-a]pyrimidines from Reaction of Benzaldehyde, Indanedione and 1H-benzo[d]imidazol-2- amine.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS Combinatorial chemistry & high throughput screening Pub Date : 2025-03-03 DOI:10.2174/0113862073362160250217093210
Yas Zibaei, Leila Zare Fekri, Mohammad Nikpassand
{"title":"Computational Study for Preparation of Benzoimidazo[1,2-a]pyrimidines from Reaction of Benzaldehyde, Indanedione and 1H-benzo[d]imidazol-2- amine.","authors":"Yas Zibaei, Leila Zare Fekri, Mohammad Nikpassand","doi":"10.2174/0113862073362160250217093210","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Benzoimidazo[1,2-a]pyrimidines are important compounds that have many useful effects in the body. They can help fight cancer, fungal infections, inflammation, and viruses. They can also help with various other health conditions. They can act as antineoplastic, antitubercular, parasitical activity, benzodiazepine receptor agonists, calcium channel blockers, potent P38 MAP kinase inhibitors, TIE-2 and/or VEGFR2 inhibitory activities, protein kinase inhibitors, and T cell activation. There are different methods to make the benzoimidazo[1,2- a]pyrimidines. Some of them dealth with the one-pot threecomponent condensation reactions of β- dicarbonyl compounds, aldehyde and 1H-benzo[d]imidazol-2-amine in the presence of catalyst. Although the synthesis of this group of compounds has been done before, and the products have been identified from the spectroscopic point of view, the kinetics and reaction mechanism have not been investigated. The strength of these calculations is that evaluation of the activation energy of various steps suggests possible mechanisms, probable mechanisms, and valuable synthetic intermediates.</p><p><strong>Methods: </strong>In this report, seven possible mechanisms for synthesizing the benzoimidazo[1,2- a]pyrimidines have been investigated using density functional theory (DFT) at the B3LYP/6- 311G** level of theory. Each synthetic route involves condensation of the benzaldehyde, indanedione and 1H-benzo[d]imidazol-2-amine molecules to yield the proposed product. The calculations showed that the suggested method has six steps; its initiation step includes the Knoevenagel reaction between indanedione and aldehyde, and the rate determining state is dehydration in the fifth step.</p><p><strong>Result: </strong>Six potential pathways for the reaction will occur. Then, we focused on the best pathway and studied it in detail. The ways that three chemicals-indanedione (R1), benzaldehyde (R2), and 1H-benzo[d]imidazol-2-amine (R3) react with each other were studied using ab-initio program by ChemBio3D, Gauss View, and Gaussian 09. The Density Functional Theory (DFT) using the B3LYP basis set was used to improve the arrangement of molecules involved in the three-part creation of a specific compound called 12-phenyl-5H-benzo[4,5]imidazo[1,2-a]indeno[1,2- d]pyrimidin-13(12H)-one (P).</p><p><strong>Conclusion: </strong>During the study of the six mechanisms, the proposed pathway 2 is the best mechanism for this reaction because its rate-determining step has the lowest activation energy value. This route consists of 6 steps, the fifth step of which is related to the conversion of IM4 to IM5 (relative ΔE: 109.80 Kj/mol), during which a dehydration reaction is performed, and this step occurs by passing through transition state TS5 (Total Energy (Hart./particles: -1194.747403).</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073362160250217093210","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Benzoimidazo[1,2-a]pyrimidines are important compounds that have many useful effects in the body. They can help fight cancer, fungal infections, inflammation, and viruses. They can also help with various other health conditions. They can act as antineoplastic, antitubercular, parasitical activity, benzodiazepine receptor agonists, calcium channel blockers, potent P38 MAP kinase inhibitors, TIE-2 and/or VEGFR2 inhibitory activities, protein kinase inhibitors, and T cell activation. There are different methods to make the benzoimidazo[1,2- a]pyrimidines. Some of them dealth with the one-pot threecomponent condensation reactions of β- dicarbonyl compounds, aldehyde and 1H-benzo[d]imidazol-2-amine in the presence of catalyst. Although the synthesis of this group of compounds has been done before, and the products have been identified from the spectroscopic point of view, the kinetics and reaction mechanism have not been investigated. The strength of these calculations is that evaluation of the activation energy of various steps suggests possible mechanisms, probable mechanisms, and valuable synthetic intermediates.

Methods: In this report, seven possible mechanisms for synthesizing the benzoimidazo[1,2- a]pyrimidines have been investigated using density functional theory (DFT) at the B3LYP/6- 311G** level of theory. Each synthetic route involves condensation of the benzaldehyde, indanedione and 1H-benzo[d]imidazol-2-amine molecules to yield the proposed product. The calculations showed that the suggested method has six steps; its initiation step includes the Knoevenagel reaction between indanedione and aldehyde, and the rate determining state is dehydration in the fifth step.

Result: Six potential pathways for the reaction will occur. Then, we focused on the best pathway and studied it in detail. The ways that three chemicals-indanedione (R1), benzaldehyde (R2), and 1H-benzo[d]imidazol-2-amine (R3) react with each other were studied using ab-initio program by ChemBio3D, Gauss View, and Gaussian 09. The Density Functional Theory (DFT) using the B3LYP basis set was used to improve the arrangement of molecules involved in the three-part creation of a specific compound called 12-phenyl-5H-benzo[4,5]imidazo[1,2-a]indeno[1,2- d]pyrimidin-13(12H)-one (P).

Conclusion: During the study of the six mechanisms, the proposed pathway 2 is the best mechanism for this reaction because its rate-determining step has the lowest activation energy value. This route consists of 6 steps, the fifth step of which is related to the conversion of IM4 to IM5 (relative ΔE: 109.80 Kj/mol), during which a dehydration reaction is performed, and this step occurs by passing through transition state TS5 (Total Energy (Hart./particles: -1194.747403).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
期刊最新文献
Computational Study for Preparation of Benzoimidazo[1,2-a]pyrimidines from Reaction of Benzaldehyde, Indanedione and 1H-benzo[d]imidazol-2- amine. Agaricus blazei Murill Extract (FA-2-b-β) Induces Ferroptosis in Diffuse Large B-Cell Lymphoma via the Nrf2/Ho-1 Pathway. Dry Powder Inhaler of Sustained-Release Microspheres Containing Glycyrrhizin: Factorial Design and Optimization. Revealing the Mechanism of Buzhong Yiqi Tang in Ameliorating Autoimmune Thyroiditis via the Toll-like Receptor Pathway. 20D-Dynamic Representation of Protein Sequences Combined with K-means Clustering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1