Goncalo V Mendonca, Jorge Carvalho, João Matos, Paulo Santos, Brad J Schoenfeld, Pedro Pezarat-Correia
{"title":"Combining an Internal Attentional Focus With Mirror Motor Observation Enhances Mechanical Output During Isokinetic Leg-Extension Exercise.","authors":"Goncalo V Mendonca, Jorge Carvalho, João Matos, Paulo Santos, Brad J Schoenfeld, Pedro Pezarat-Correia","doi":"10.1123/jab.2024-0187","DOIUrl":null,"url":null,"abstract":"<p><p>When carrying out a motor task, the direction of the performer's attentional focus can affect mechanical output and muscle activation. Cortical excitability increases with the observation of motor skills. However, it is unknown if this effect can be additive to that resulting from an internal attentional focus during resistance exercise. A crossover-study design was employed to examine the acute effects of combining mirror self-motor observation (MO) and internally focused verbal instructions on mechanical output and muscle activation during isokinetic concentric knee-extension exercise. Ten participants were tested in 2 different conditions: verbal alone and verbal + MO-mirror. The combination of verbal + MO-mirror attenuated the decrease in torque output in response to 6 sets of 10 isokinetic contractions (P = .043). Interestingly, this effect was paired by a lower-level antagonist/agonist coactivation with the verbal + MO-mirror condition (P = .031). No other differences between conditions were noted. Taken together, these results suggest that the combination of both cueing modalities elicits a more effective contraction strategy during knee-extension exercise. Ultimately, this provides preliminary evidence of better motor performance and heightened fatigue resistance in response to isokinetic exercise.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-8"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2024-0187","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
When carrying out a motor task, the direction of the performer's attentional focus can affect mechanical output and muscle activation. Cortical excitability increases with the observation of motor skills. However, it is unknown if this effect can be additive to that resulting from an internal attentional focus during resistance exercise. A crossover-study design was employed to examine the acute effects of combining mirror self-motor observation (MO) and internally focused verbal instructions on mechanical output and muscle activation during isokinetic concentric knee-extension exercise. Ten participants were tested in 2 different conditions: verbal alone and verbal + MO-mirror. The combination of verbal + MO-mirror attenuated the decrease in torque output in response to 6 sets of 10 isokinetic contractions (P = .043). Interestingly, this effect was paired by a lower-level antagonist/agonist coactivation with the verbal + MO-mirror condition (P = .031). No other differences between conditions were noted. Taken together, these results suggest that the combination of both cueing modalities elicits a more effective contraction strategy during knee-extension exercise. Ultimately, this provides preliminary evidence of better motor performance and heightened fatigue resistance in response to isokinetic exercise.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.