Approximating Human-Level 3D Visual Inferences With Deep Neural Networks.

Q1 Social Sciences Open Mind Pub Date : 2025-02-16 eCollection Date: 2025-01-01 DOI:10.1162/opmi_a_00189
Thomas P O'Connell, Tyler Bonnen, Yoni Friedman, Ayush Tewari, Vincent Sitzmann, Joshua B Tenenbaum, Nancy Kanwisher
{"title":"Approximating Human-Level 3D Visual Inferences With Deep Neural Networks.","authors":"Thomas P O'Connell, Tyler Bonnen, Yoni Friedman, Ayush Tewari, Vincent Sitzmann, Joshua B Tenenbaum, Nancy Kanwisher","doi":"10.1162/opmi_a_00189","DOIUrl":null,"url":null,"abstract":"<p><p>Humans make rich inferences about the geometry of the visual world. While deep neural networks (DNNs) achieve human-level performance on some psychophysical tasks (e.g., rapid classification of object or scene categories), they often fail in tasks requiring inferences about the underlying shape of objects or scenes. Here, we ask whether and how this gap in 3D shape representation between DNNs and humans can be closed. First, we define the problem space: after generating a stimulus set to evaluate 3D shape inferences using a match-to-sample task, we confirm that standard DNNs are unable to reach human performance. Next, we construct a set of candidate 3D-aware DNNs including 3D neural field (Light Field Network), autoencoder, and convolutional architectures. We investigate the role of the learning objective and dataset by training single-view (the model only sees one viewpoint of an object per training trial) and multi-view (the model is trained to associate multiple viewpoints of each object per training trial) versions of each architecture. When the same object categories appear in the model training and match-to-sample test sets, multi-view DNNs approach human-level performance for 3D shape matching, highlighting the importance of a learning objective that enforces a common representation across viewpoints of the same object. Furthermore, the 3D Light Field Network was the model most similar to humans across all tests, suggesting that building in 3D inductive biases increases human-model alignment. Finally, we explore the generalization performance of multi-view DNNs to out-of-distribution object categories not seen during training. Overall, our work shows that multi-view learning objectives for DNNs are necessary but not sufficient to make similar 3D shape inferences as humans and reveals limitations in capturing human-like shape inferences that may be inherent to DNN modeling approaches. We provide a methodology for understanding human 3D shape perception within a deep learning framework and highlight out-of-domain generalization as the next challenge for learning human-like 3D representations with DNNs.</p>","PeriodicalId":32558,"journal":{"name":"Open Mind","volume":"9 ","pages":"305-324"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/opmi_a_00189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Humans make rich inferences about the geometry of the visual world. While deep neural networks (DNNs) achieve human-level performance on some psychophysical tasks (e.g., rapid classification of object or scene categories), they often fail in tasks requiring inferences about the underlying shape of objects or scenes. Here, we ask whether and how this gap in 3D shape representation between DNNs and humans can be closed. First, we define the problem space: after generating a stimulus set to evaluate 3D shape inferences using a match-to-sample task, we confirm that standard DNNs are unable to reach human performance. Next, we construct a set of candidate 3D-aware DNNs including 3D neural field (Light Field Network), autoencoder, and convolutional architectures. We investigate the role of the learning objective and dataset by training single-view (the model only sees one viewpoint of an object per training trial) and multi-view (the model is trained to associate multiple viewpoints of each object per training trial) versions of each architecture. When the same object categories appear in the model training and match-to-sample test sets, multi-view DNNs approach human-level performance for 3D shape matching, highlighting the importance of a learning objective that enforces a common representation across viewpoints of the same object. Furthermore, the 3D Light Field Network was the model most similar to humans across all tests, suggesting that building in 3D inductive biases increases human-model alignment. Finally, we explore the generalization performance of multi-view DNNs to out-of-distribution object categories not seen during training. Overall, our work shows that multi-view learning objectives for DNNs are necessary but not sufficient to make similar 3D shape inferences as humans and reveals limitations in capturing human-like shape inferences that may be inherent to DNN modeling approaches. We provide a methodology for understanding human 3D shape perception within a deep learning framework and highlight out-of-domain generalization as the next challenge for learning human-like 3D representations with DNNs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Mind
Open Mind Social Sciences-Linguistics and Language
CiteScore
3.20
自引率
0.00%
发文量
15
审稿时长
53 weeks
期刊最新文献
Approximating Human-Level 3D Visual Inferences With Deep Neural Networks. Prosodic Cues Support Inferences About the Question's Pedagogical Intent. The Double Standard of Ownership. Combination and Differentiation Theories of Categorization: A Comparison Using Participants' Categorization Descriptions. Investigating Sensitivity to Shared Information and Personal Experience in Children's Use of Majority Information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1