ApoE2 affects insulin signaling in the hippocampus and spatial cognition of aged mice in a sex-dependent manner.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2025-02-26 DOI:10.1186/s12964-025-02093-3
Yu Wang, Hanchen Liu, Yijuan Ye, Wenting Fang, Anlan Lin, Xiaoman Dai, Qinyong Ye, Xiaochun Chen, Jing Zhang
{"title":"ApoE2 affects insulin signaling in the hippocampus and spatial cognition of aged mice in a sex-dependent manner.","authors":"Yu Wang, Hanchen Liu, Yijuan Ye, Wenting Fang, Anlan Lin, Xiaoman Dai, Qinyong Ye, Xiaochun Chen, Jing Zhang","doi":"10.1186/s12964-025-02093-3","DOIUrl":null,"url":null,"abstract":"<p><p>Apolipoprotein E (APOE) has garnered significant attention as one of the most influential genetic risk factors for Alzheimer's disease (AD). While the pathogenic role of APOE4 in sporadic AD has been extensively studied, research on the protective effects of the APOE2 genotype and its underlying mechanisms remains limited. Additionally, the existence of sex differences in the protective effects of ApoE2 continues to be a topic of debate. In this study, we utilized humanized ApoE2- and ApoE3- target replacement mice to examine the sex-specific effects of ApoE2 on cognition. Compared with female ApoE3 mice, we found significantly lower spatial cognitive ability and impaired hippocampal synaptic ultrastructure in aged female ApoE2 mice, accompanied by reduced insulin signaling of the hippocampus. Further analyses by target metabolomics and transcriptomic analyses revealed that female ApoE2 mice exhibit an age-related decline in hippocampal inositol levels, and that alterations in inositol levels lower insulin signaling. Importantly, inositol supplementation was found to alleviate peripheral glucose intolerance, enhance insulin signaling, and ultimately improve cognitive function. Interestingly, these differences were not observed between male ApoE2 and ApoE3 mice. The research findings not only provide new insights into the impact of ApoE2 on cognition but also offer a new strategy for cognitive improvement through inositol supplementation in older women.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"112"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866816/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02093-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Apolipoprotein E (APOE) has garnered significant attention as one of the most influential genetic risk factors for Alzheimer's disease (AD). While the pathogenic role of APOE4 in sporadic AD has been extensively studied, research on the protective effects of the APOE2 genotype and its underlying mechanisms remains limited. Additionally, the existence of sex differences in the protective effects of ApoE2 continues to be a topic of debate. In this study, we utilized humanized ApoE2- and ApoE3- target replacement mice to examine the sex-specific effects of ApoE2 on cognition. Compared with female ApoE3 mice, we found significantly lower spatial cognitive ability and impaired hippocampal synaptic ultrastructure in aged female ApoE2 mice, accompanied by reduced insulin signaling of the hippocampus. Further analyses by target metabolomics and transcriptomic analyses revealed that female ApoE2 mice exhibit an age-related decline in hippocampal inositol levels, and that alterations in inositol levels lower insulin signaling. Importantly, inositol supplementation was found to alleviate peripheral glucose intolerance, enhance insulin signaling, and ultimately improve cognitive function. Interestingly, these differences were not observed between male ApoE2 and ApoE3 mice. The research findings not only provide new insights into the impact of ApoE2 on cognition but also offer a new strategy for cognitive improvement through inositol supplementation in older women.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Loss of Anti-Müllerian Hormone Signaling in Mice Affects Trabecular Bone Mass in a Sex- and Age-Dependent Manner.
IF 4.8 3区 材料科学ACS Applied Electronic MaterialsPub Date : 2022-10-11 DOI: 10.1210/endocr/bqac157
Christiane van As, Marijke Koedam, Anke McLuskey, Piet Kramer, Najiba Lahlou, Bram C J van der Eerden, Jenny A Visser
Social defeat affects inflammatory signaling and exploratory behavior in mice in a sex-dependent manner
IF 0 Neuroimmunology and NeuroinflammationPub Date : 2020-09-12 DOI: 10.20517/2347-8659.2020.20
R. Davis, K. McCracken, D. Buck, J. Curtis
In nondiabetic C57BL/6J mice, canagliflozin affects the skeleton in a sex- and age-dependent manner.
IF 3.4 JBMR PlusPub Date : 2024-10-10 DOI: 10.1093/jbmrpl/ziae128
Carolyn Chlebek, Casey McAndrews, Samantha N Costa, Victoria E DeMambro, Shoshana Yakar, Clifford J Rosen
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
BDNF secreted by mesenchymal stem cells improves aged oocyte quality and development potential by activating the ERK1/2 pathway. MDA5 protein mediating persistent ER stress/unfolded protein response contributes to endothelial-mesenchymal-transition of lung microvascular endothelial cell in dermatomyositis. Platelet glycoprotein VI promotes folic acid-induced acute kidney injury through interaction with tubular epithelial cell-derived galectin-3. Cancer‑associated fibroblasts: a pivotal regulator of tumor microenvironment in the context of radiotherapy. Induction of LY6E regulates interleukin-1β production, potentially contributing to the immunopathogenesis of systemic lupus erythematosus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1