Characterization of moyamoya disease molecular subtypes through disulfidptosis‑related genes and immune landscape analysis.

Experimental and therapeutic medicine Pub Date : 2025-02-14 eCollection Date: 2025-04-01 DOI:10.3892/etm.2025.12824
Yanru Wang, Yutao Su, Junze Zhang, Zhenyu Zhou, Yuanli Zhao, Shihao He, Rong Wang
{"title":"Characterization of moyamoya disease molecular subtypes through disulfidptosis‑related genes and immune landscape analysis.","authors":"Yanru Wang, Yutao Su, Junze Zhang, Zhenyu Zhou, Yuanli Zhao, Shihao He, Rong Wang","doi":"10.3892/etm.2025.12824","DOIUrl":null,"url":null,"abstract":"<p><p>Moyamoya disease (MMD), a chronic cerebrovascular disorder, is characterized by progressive stenosis of major intracranial arteries. However, the mechanisms underlying the pathological narrowing have remained largely elusive. Disulfidptosis is a new mode of cell death caused by the vulnerability of the actin cytoskeleton to disulfide stress, and proteomic profiling of MMD has revealed that abnormal proliferation of endothelial cells may be induced by upregulation of focal adhesion-related proteins. However, the role of disulfidptosis in MMD has not yet been reported. The Gene Expression Omnibus database was searched for datasets with a sample size of more than six and four microarray datasets (GSE189993, GSE157628, GSE141024 and GSE141022) were downloaded. Based on the expression profiles of DRGs in each sample, MMD was clustered into three discrete molecular subtypes. Differential expression analysis was performed using the R package 'limma' to analyze the differences in gene expression between MMD and controls. Functional enrichment analysis was used to explore the molecular functions and mechanisms of the differentially expressed DRGs in MMD. Based on the results of differential expression analysis, the intersection among four comparison groups, which included C1 vs. C2, C1 vs. C3, C2 vs. C3, and MMD vs. controls, were taken and four hub genes were selected for further study. In addition, the expression and distribution of 22 types of immune cells in each sample was analyzed. Spearman's correlation analysis was performed to explore the correlation between the hub genes and the proportion of immune cells. MMD-related genes were identified and the relationship between them and hub genes was analyzed. Furthermore, ELISA was performed to verify the expression of the four MMD hub genes. In the present study, a novel molecular classification of MMD based on disulfidptosis gene expression was established and a total of 348 upregulated and 801 downregulated genes were identified in patients with MMD compared with controls. A total of four hub genes (<i>WDR27</i>, <i>OSBPL11</i>, <i>MSOM1</i> and <i>NEIL2</i>) were selected as biomarkers for the different subtypes of MMD. The DRG results indicated that disulfidptosis may affect the progression of MMD pathogenesis. Based on this, MMD molecular subtypes were constructed and four hub genes were selected. Immune infiltration analysis indicated a relationship between hub genes and immune dysfunction, which could lead to abnormal migration and proliferation of endothelial cells in MMD. The results of the gene set enrichment analysis and gene set variation analysis correlated with the results of immune dysfunction. Differential analysis of MMD-related genes revealed that <i>MEG3</i>, <i>NCL</i>, <i>NFIB</i> and others were significantly differentially expressed in patients with MMD compared to controls. <i>NEIL2</i> showed a significant positive correlation with <i>MEG3</i> expression (Pearson's r=0.4), whereas <i>WDR27</i> showed a significant negative correlation with <i>MEG3</i> expression (Pearson's r=0.415). Correlation analysis showed that the four hub genes were significantly associated with endothelial migration- and proliferation-related genes. ELISA revealed that four hub genes (<i>WDR27</i>, <i>OSBPL11</i>, <i>MSOM1</i> and <i>NEIL2</i>) were significantly decreased in MMD compared to healthy controls, which correlated with the results of the present bioinformatic analyses. In conclusion, disulfidptosis may be involved in the pathogenesis of MMD. Immune infiltration analysis demonstrated immune dysregulation among different disulfidptosis subtypes, which may lead to the migration and proliferation of endothelial cells. The present study was the first to explore the correlation between MMD pathogenesis and disulfidptosis, providing novel insights and identifying potential subtype classifications and biomarkers for the diagnosis of MMD.</p>","PeriodicalId":94002,"journal":{"name":"Experimental and therapeutic medicine","volume":"29 4","pages":"74"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11862799/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental and therapeutic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3892/etm.2025.12824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Moyamoya disease (MMD), a chronic cerebrovascular disorder, is characterized by progressive stenosis of major intracranial arteries. However, the mechanisms underlying the pathological narrowing have remained largely elusive. Disulfidptosis is a new mode of cell death caused by the vulnerability of the actin cytoskeleton to disulfide stress, and proteomic profiling of MMD has revealed that abnormal proliferation of endothelial cells may be induced by upregulation of focal adhesion-related proteins. However, the role of disulfidptosis in MMD has not yet been reported. The Gene Expression Omnibus database was searched for datasets with a sample size of more than six and four microarray datasets (GSE189993, GSE157628, GSE141024 and GSE141022) were downloaded. Based on the expression profiles of DRGs in each sample, MMD was clustered into three discrete molecular subtypes. Differential expression analysis was performed using the R package 'limma' to analyze the differences in gene expression between MMD and controls. Functional enrichment analysis was used to explore the molecular functions and mechanisms of the differentially expressed DRGs in MMD. Based on the results of differential expression analysis, the intersection among four comparison groups, which included C1 vs. C2, C1 vs. C3, C2 vs. C3, and MMD vs. controls, were taken and four hub genes were selected for further study. In addition, the expression and distribution of 22 types of immune cells in each sample was analyzed. Spearman's correlation analysis was performed to explore the correlation between the hub genes and the proportion of immune cells. MMD-related genes were identified and the relationship between them and hub genes was analyzed. Furthermore, ELISA was performed to verify the expression of the four MMD hub genes. In the present study, a novel molecular classification of MMD based on disulfidptosis gene expression was established and a total of 348 upregulated and 801 downregulated genes were identified in patients with MMD compared with controls. A total of four hub genes (WDR27, OSBPL11, MSOM1 and NEIL2) were selected as biomarkers for the different subtypes of MMD. The DRG results indicated that disulfidptosis may affect the progression of MMD pathogenesis. Based on this, MMD molecular subtypes were constructed and four hub genes were selected. Immune infiltration analysis indicated a relationship between hub genes and immune dysfunction, which could lead to abnormal migration and proliferation of endothelial cells in MMD. The results of the gene set enrichment analysis and gene set variation analysis correlated with the results of immune dysfunction. Differential analysis of MMD-related genes revealed that MEG3, NCL, NFIB and others were significantly differentially expressed in patients with MMD compared to controls. NEIL2 showed a significant positive correlation with MEG3 expression (Pearson's r=0.4), whereas WDR27 showed a significant negative correlation with MEG3 expression (Pearson's r=0.415). Correlation analysis showed that the four hub genes were significantly associated with endothelial migration- and proliferation-related genes. ELISA revealed that four hub genes (WDR27, OSBPL11, MSOM1 and NEIL2) were significantly decreased in MMD compared to healthy controls, which correlated with the results of the present bioinformatic analyses. In conclusion, disulfidptosis may be involved in the pathogenesis of MMD. Immune infiltration analysis demonstrated immune dysregulation among different disulfidptosis subtypes, which may lead to the migration and proliferation of endothelial cells. The present study was the first to explore the correlation between MMD pathogenesis and disulfidptosis, providing novel insights and identifying potential subtype classifications and biomarkers for the diagnosis of MMD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prognostic factors affecting probing depth reduction following non‑surgical periodontal therapy in patients with periodontitis: A linear mixed‑effects model analysis. Sclerosing angiomatoid nodular transformation mimicking a splenic metastasis from rectal cancer: A case report. Synchronous thyroid medullary cancer and thyroid hemiagenesis: A case report. [Retracted] Effects of the MAPK pathway and the expression of CAR in a murine model of viral myocarditis. Characterization of moyamoya disease molecular subtypes through disulfidptosis‑related genes and immune landscape analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1