Heng Zhang, Youcun Bai, Wei Sun, Xiaogang Yang, Ruguang Ma, Liming Dai, Chang Ming Li
{"title":"Realizing the Synergy of Interface and Dual-Defect Engineering for Molybdenum Disulfide Enables Efficient Sodium-Ion Storage","authors":"Heng Zhang, Youcun Bai, Wei Sun, Xiaogang Yang, Ruguang Ma, Liming Dai, Chang Ming Li","doi":"10.1021/acsnano.4c17967","DOIUrl":null,"url":null,"abstract":"Engineering-rich electrocatalyst defects play a critical role in greatly promoting the charge storage/transfer capability of an energy storage/conversion system. Here, an ingenious and effective two-step strategy was used to synthesize a bimetallic sulfide/oxide composite with a coaxial carbon coating, starting from mixing well-dispersed MoO<sub>3</sub> nanobelts and Co-PAA compound, followed by a selective etching process. The simultaneous formation of dual defects of interlayer defect and sulfur-rich vacancies as well as MoO<sub>2</sub>/MoS<sub>2-<i>x</i></sub>/CoS heterojunctions noticeably enhances both electron transfer and ion diffusion kinetics. The ultrathin carbon protective layer on the surface of the composite ensures its high conductivity and excellent structural stability. The composite electrode shows a high reversible capacity (158.3 mAh g<sup>–1</sup> at 10 A g<sup>–1</sup> after 4000 cycles) and outstanding long-cycle stability (0.04% per cycle over 2100 cycles at 20 A g<sup>–1</sup>). A full cell based on MoO<sub>2</sub>/MoS<sub>2–<i>x</i></sub>/CoS@N, S–C anode, and Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> cathode can maintain a reversible capacity of 128.1 mAh g<sup>–1</sup> after 600 cycles at 1 A g<sup>–1</sup>, surpassing that based on MoO<sub>2</sub>/MoS<sub>2</sub> and is very comparable in performance with the state-of-the-art Na-ion full cells. Moreover, density functional theory (DFT) calculations, electrochemical kinetics analysis, and <i>in situ</i> Raman and <i>ex-situ</i> X-ray diffraction characterization were carried out to elucidate the involved scientific mechanisms of sodium storage.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"4 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c17967","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Engineering-rich electrocatalyst defects play a critical role in greatly promoting the charge storage/transfer capability of an energy storage/conversion system. Here, an ingenious and effective two-step strategy was used to synthesize a bimetallic sulfide/oxide composite with a coaxial carbon coating, starting from mixing well-dispersed MoO3 nanobelts and Co-PAA compound, followed by a selective etching process. The simultaneous formation of dual defects of interlayer defect and sulfur-rich vacancies as well as MoO2/MoS2-x/CoS heterojunctions noticeably enhances both electron transfer and ion diffusion kinetics. The ultrathin carbon protective layer on the surface of the composite ensures its high conductivity and excellent structural stability. The composite electrode shows a high reversible capacity (158.3 mAh g–1 at 10 A g–1 after 4000 cycles) and outstanding long-cycle stability (0.04% per cycle over 2100 cycles at 20 A g–1). A full cell based on MoO2/MoS2–x/CoS@N, S–C anode, and Na3V2(PO4)3 cathode can maintain a reversible capacity of 128.1 mAh g–1 after 600 cycles at 1 A g–1, surpassing that based on MoO2/MoS2 and is very comparable in performance with the state-of-the-art Na-ion full cells. Moreover, density functional theory (DFT) calculations, electrochemical kinetics analysis, and in situ Raman and ex-situ X-ray diffraction characterization were carried out to elucidate the involved scientific mechanisms of sodium storage.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.