Hierarchical Tandem Catalysis Promotes CO Spillover and Trapping for Efficient CO2 Reduction to C2+ Products

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-02-27 DOI:10.1021/acsnano.5c00696
Lei Bian, Yu Bai, Jia-Yi Chen, Hong-Kai Guo, Shize Liu, Hao Tian, Nana Tian, Zhong-Li Wang
{"title":"Hierarchical Tandem Catalysis Promotes CO Spillover and Trapping for Efficient CO2 Reduction to C2+ Products","authors":"Lei Bian, Yu Bai, Jia-Yi Chen, Hong-Kai Guo, Shize Liu, Hao Tian, Nana Tian, Zhong-Li Wang","doi":"10.1021/acsnano.5c00696","DOIUrl":null,"url":null,"abstract":"The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to produce multicarbon (C<sub>2+</sub>) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel or valuable chemicals; however, producing C<sub>2+</sub> at high current densities is still a challenge. Herein, we design a hierarchically structured tandem catalysis electrode for greatly improved catalytic activity and selectivity for C<sub>2+</sub> products. The tandem catalysis electrode is constructed of a sputtered Ag nanoparticle layer on a hydrophobic polytetrafluoroethylene (PTFE) membrane and a layer of nitrogen-doped carbon (NC)-modified Cu nanowire arrays. The Cu nanowire arrays are <i>in situ</i> grown on PTFE by electrochemical oxidation of sputtered CuAl alloy, in which the chemical etching of metal Al induces the formation of a Cu nanowire array structure. Within hierarchical configuration, CO can be efficiently generated on an active Ag layer and then spillover and transfer to NC-modified Cu nanowire array layer, in which Cu/NC interfaces can enhance *CO trapping and adsorption. During the CO<sub>2</sub>RR, the optimized tandem catalysis electrode achieves superior Faradaic efficiencies of 53.5% and 87.5% for ethylene (C<sub>2</sub>H<sub>4</sub>) and C<sub>2+</sub> products at the current density of 519.0 mA cm<sup>–2</sup>, respectively, with a high C<sub>2+</sub>/C<sub>1</sub> ratio of 10.42 and long-term stability up to 50 h. <i>In situ</i> Raman and attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirm that the Ag–Cu–NC tandem catalysis system significantly enhances the linear adsorption of *CO intermediates and the dissociation of H<sub>2</sub>O, improves the C–C coupling capability, and stabilizes the key intermediate *OCCOH to produce C<sub>2+</sub> products.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"33 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00696","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical CO2 reduction reaction (CO2RR) to produce multicarbon (C2+) hydrocarbons or oxygenate compounds is a promising route to obtain a renewable fuel or valuable chemicals; however, producing C2+ at high current densities is still a challenge. Herein, we design a hierarchically structured tandem catalysis electrode for greatly improved catalytic activity and selectivity for C2+ products. The tandem catalysis electrode is constructed of a sputtered Ag nanoparticle layer on a hydrophobic polytetrafluoroethylene (PTFE) membrane and a layer of nitrogen-doped carbon (NC)-modified Cu nanowire arrays. The Cu nanowire arrays are in situ grown on PTFE by electrochemical oxidation of sputtered CuAl alloy, in which the chemical etching of metal Al induces the formation of a Cu nanowire array structure. Within hierarchical configuration, CO can be efficiently generated on an active Ag layer and then spillover and transfer to NC-modified Cu nanowire array layer, in which Cu/NC interfaces can enhance *CO trapping and adsorption. During the CO2RR, the optimized tandem catalysis electrode achieves superior Faradaic efficiencies of 53.5% and 87.5% for ethylene (C2H4) and C2+ products at the current density of 519.0 mA cm–2, respectively, with a high C2+/C1 ratio of 10.42 and long-term stability up to 50 h. In situ Raman and attenuated total reflection-surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) confirm that the Ag–Cu–NC tandem catalysis system significantly enhances the linear adsorption of *CO intermediates and the dissociation of H2O, improves the C–C coupling capability, and stabilizes the key intermediate *OCCOH to produce C2+ products.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Bond Dissociation Dynamics of Single Molecules on a Metal Surface Reduced Thermal Conductivity in SnSe2 Moiré Superlattices Adaptive All-Fiber Actuator for Human–Environment Interaction Coordinated Ionic Self-Assembly of Highly Ordered Mesoporous Pt2Sn2S6 Networks for Boosted Hydrogen Evolution Direct Observation of Phase Change Accommodating Hydrogen Uptake in Bimetallic Nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1