Fatigue in vibration energy harvesters: State-of-the-art review

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS Renewable and Sustainable Energy Reviews Pub Date : 2025-02-28 DOI:10.1016/j.rser.2025.115521
Wenjia Lu, Jiyang Fu, Nan Wu, Yuncheng He
{"title":"Fatigue in vibration energy harvesters: State-of-the-art review","authors":"Wenjia Lu,&nbsp;Jiyang Fu,&nbsp;Nan Wu,&nbsp;Yuncheng He","doi":"10.1016/j.rser.2025.115521","DOIUrl":null,"url":null,"abstract":"<div><div>The fatigue performance of vibration energy harvesters directly impacts their reliability and longevity in practical applications, making it to be crucial to study their fatigue behavior. However, current research in this area remains insufficient. This study systematically reviews the fatigue performance of piezoelectric, electromagnetic, and electrostatic energy harvesters, with a focus on analyzing the differences in fatigue behavior across various materials and structural designs and their effects on harvester lifespan. The work begins by introducing the energy transduction mechanisms in vibration energy harvesting systems and the associated fatigue issues, followed by an assessment of relevant research methodologies. The influence of piezoelectric materials and harvester structural design on fatigue performance is then explored, revealing the impacts of material fatigue damage, stress concentration, and adhesive interface problems on device longevity. For electromagnetic and electrostatic energy harvesters, this analysis highlights current research gaps, particularly in the areas of mechanical wear and charge leakage. The study further discusses methods to enhance harvester fatigue performance through material selection and structural optimization and suggests that future research should focus on the development of new materials, structural improvements, and the investigation of fatigue performance under multiple environmental conditions. This work provides a comprehensive review and quantitative analysis of fatigue in vibration energy harvesters, aiming to advance the field.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"214 ","pages":"Article 115521"},"PeriodicalIF":16.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032125001947","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The fatigue performance of vibration energy harvesters directly impacts their reliability and longevity in practical applications, making it to be crucial to study their fatigue behavior. However, current research in this area remains insufficient. This study systematically reviews the fatigue performance of piezoelectric, electromagnetic, and electrostatic energy harvesters, with a focus on analyzing the differences in fatigue behavior across various materials and structural designs and their effects on harvester lifespan. The work begins by introducing the energy transduction mechanisms in vibration energy harvesting systems and the associated fatigue issues, followed by an assessment of relevant research methodologies. The influence of piezoelectric materials and harvester structural design on fatigue performance is then explored, revealing the impacts of material fatigue damage, stress concentration, and adhesive interface problems on device longevity. For electromagnetic and electrostatic energy harvesters, this analysis highlights current research gaps, particularly in the areas of mechanical wear and charge leakage. The study further discusses methods to enhance harvester fatigue performance through material selection and structural optimization and suggests that future research should focus on the development of new materials, structural improvements, and the investigation of fatigue performance under multiple environmental conditions. This work provides a comprehensive review and quantitative analysis of fatigue in vibration energy harvesters, aiming to advance the field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
期刊最新文献
Editorial Board Informal economies and energy efficiency: Empirical evidence from African countries Impact of hydrogen on cement slurry: A review Product quality research in the industrialized preparation of electronic grade polysilicon: A review of impurity sources and control strategies An experimental study for improving performance of a cylindrical OWC WEC with a heave plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1