{"title":"Metagenomics deciphers the function of biochar in alleviating zinc ion stress during sulfur autotrophic denitrification process","authors":"Wen-Jie Ma, Han-Min Zhang","doi":"10.1016/j.biortech.2025.132303","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfur autotrophic denitrification (SAD) process has significant potential in treating low carbon/nitrogen ratio wastewater. However, the presence of zinc ions (Zn<sup>2+</sup>) adversely affects the denitrification performance. This study investigated the effect of biochar prepared at 300 °C (BC300) and 600 °C (BC600), as well as dosing strategy, on denitrification performance in the SAD process under Zn<sup>2+</sup> inhibition. Firstly, BC600 had a higher maximum adsorption capacity for Zn<sup>2+</sup> than BC300 in nitrogen-containing wastewater. Surface complexation was mainly adsorption mechanism. BC300 exhibited a greater ability in enhancing denitrification ability than BC600. The strategy of synchronous addition is more effective than pre-adsorption. Firstly, BC300 enhancing humic-like component secretion. BC300 enriched higher abundance of sulfur-oxidizing bacteria. More importantly, BC300 counteracted the negative effect of Zn<sup>2+</sup> by enhancing glycan biosynthesis and metabolism, enriching functional genes, and increased the level of quorum sensing. The study presents a sustainable approach for maintaining denitrification performance under environmental stress.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"424 ","pages":"Article 132303"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096085242500269X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur autotrophic denitrification (SAD) process has significant potential in treating low carbon/nitrogen ratio wastewater. However, the presence of zinc ions (Zn2+) adversely affects the denitrification performance. This study investigated the effect of biochar prepared at 300 °C (BC300) and 600 °C (BC600), as well as dosing strategy, on denitrification performance in the SAD process under Zn2+ inhibition. Firstly, BC600 had a higher maximum adsorption capacity for Zn2+ than BC300 in nitrogen-containing wastewater. Surface complexation was mainly adsorption mechanism. BC300 exhibited a greater ability in enhancing denitrification ability than BC600. The strategy of synchronous addition is more effective than pre-adsorption. Firstly, BC300 enhancing humic-like component secretion. BC300 enriched higher abundance of sulfur-oxidizing bacteria. More importantly, BC300 counteracted the negative effect of Zn2+ by enhancing glycan biosynthesis and metabolism, enriching functional genes, and increased the level of quorum sensing. The study presents a sustainable approach for maintaining denitrification performance under environmental stress.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.