Jonathan Jones , Alberto Gonzalez Garcia , Mark Whittaker , Robert Lancaster , Nicholas Barnard , Sean John , Joseph Doyle , Julian Mason-Flucke
{"title":"The influence of phase angle on the TMF crack initiation behaviour and damage mechanisms of a single-crystal superalloy","authors":"Jonathan Jones , Alberto Gonzalez Garcia , Mark Whittaker , Robert Lancaster , Nicholas Barnard , Sean John , Joseph Doyle , Julian Mason-Flucke","doi":"10.1016/j.ijfatigue.2025.108887","DOIUrl":null,"url":null,"abstract":"<div><div>Thermo-mechanical fatigue (TMF) is a complex damage mechanism considered to be one of the key issues limiting the service lives of hot section components in a gas turbine engine. Turbine blades and nozzle guide vanes are particularly susceptible to this form of material degradation, which results from the simultaneous cycling of mechanical and thermal loads. In this research, a series of TMF tests were undertaken on a single crystal nickel-based superalloy, CMSX-4 under a variety of phase angles and a thermal cycle of 550–1050 °C, to holistically understand the evolving damage mechanisms that can occur under the various loading conditions. The generated data has shown that for the strain ranges tested, fatigue life is significantly affected by the employed phase angle. Furthermore, the length of time that the material is exposed to elevated temperature has a substantial influence on the material’s microstructure, and thus, the dominant mode of damage that occurs.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"196 ","pages":"Article 108887"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112325000842","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Thermo-mechanical fatigue (TMF) is a complex damage mechanism considered to be one of the key issues limiting the service lives of hot section components in a gas turbine engine. Turbine blades and nozzle guide vanes are particularly susceptible to this form of material degradation, which results from the simultaneous cycling of mechanical and thermal loads. In this research, a series of TMF tests were undertaken on a single crystal nickel-based superalloy, CMSX-4 under a variety of phase angles and a thermal cycle of 550–1050 °C, to holistically understand the evolving damage mechanisms that can occur under the various loading conditions. The generated data has shown that for the strain ranges tested, fatigue life is significantly affected by the employed phase angle. Furthermore, the length of time that the material is exposed to elevated temperature has a substantial influence on the material’s microstructure, and thus, the dominant mode of damage that occurs.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.