Jingyang Jiang , Jiaqi Lu , Jinkai Chen , Dinku Hazarika , Chi Zhang , Hao Jin , Shurong Dong , Weipeng Xuan , Jikui Luo
{"title":"Ion barrier layer-induced enhancement of ionic charge retention in triboelectric nanogenerators at high temperatures","authors":"Jingyang Jiang , Jiaqi Lu , Jinkai Chen , Dinku Hazarika , Chi Zhang , Hao Jin , Shurong Dong , Weipeng Xuan , Jikui Luo","doi":"10.1016/j.apsusc.2025.162830","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of the Internet of Things (IoT), sensors for extreme environments, such as fires or outer space, require triboelectric nanogenerators (TENGs) that perform reliably at high temperatures to provide sustainable energy. However, traditional TENGs face severe performance degradation due to thermionic emission at elevated temperatures. To address this, we introduced ion barrier layers (SiO<sub>2</sub> and polytetrafluoroethylene (PTFE)) to suppress thermionic emission and improve charge retention of injected ions. High-temperature experiments showed that the SiO<sub>2</sub> ion barrier significantly enhances charge retention, with further improvement observed using PTFE. Molecular dynamics (MD) and density functional theory (DFT) calculations were employed to elucidate the underlying mechanisms. MD simulations quantify the mean square displacements of injected ions, showing strong consistency with experimental results. DFT calculations evaluate the electrostatic potentials of various structures, revealing that interfaces with higher average electrostatic potential offer better charge retention. These findings provide a strategy for enhancing TENG performance in high-temperature environments and offer guidance for the design of TENG materials and structures for extreme applications.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"693 ","pages":"Article 162830"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225005446","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of the Internet of Things (IoT), sensors for extreme environments, such as fires or outer space, require triboelectric nanogenerators (TENGs) that perform reliably at high temperatures to provide sustainable energy. However, traditional TENGs face severe performance degradation due to thermionic emission at elevated temperatures. To address this, we introduced ion barrier layers (SiO2 and polytetrafluoroethylene (PTFE)) to suppress thermionic emission and improve charge retention of injected ions. High-temperature experiments showed that the SiO2 ion barrier significantly enhances charge retention, with further improvement observed using PTFE. Molecular dynamics (MD) and density functional theory (DFT) calculations were employed to elucidate the underlying mechanisms. MD simulations quantify the mean square displacements of injected ions, showing strong consistency with experimental results. DFT calculations evaluate the electrostatic potentials of various structures, revealing that interfaces with higher average electrostatic potential offer better charge retention. These findings provide a strategy for enhancing TENG performance in high-temperature environments and offer guidance for the design of TENG materials and structures for extreme applications.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.