Unveiling novel oxygen-dependent docosahexaenoic acid biosynthesis pathway in Crypthecodinium cohnii via dual-function △4-fatty acid desaturases

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2025-02-25 DOI:10.1016/j.biortech.2025.132292
Yi-Tong Yao , Xiao Zhang , Chen-Yu Wang , Yu-He Zhang , Da-Wei Li, Wei-Dong Yang, Hong-Ye Li, Li-Gong Zou
{"title":"Unveiling novel oxygen-dependent docosahexaenoic acid biosynthesis pathway in Crypthecodinium cohnii via dual-function △4-fatty acid desaturases","authors":"Yi-Tong Yao ,&nbsp;Xiao Zhang ,&nbsp;Chen-Yu Wang ,&nbsp;Yu-He Zhang ,&nbsp;Da-Wei Li,&nbsp;Wei-Dong Yang,&nbsp;Hong-Ye Li,&nbsp;Li-Gong Zou","doi":"10.1016/j.biortech.2025.132292","DOIUrl":null,"url":null,"abstract":"<div><div><em>Crypthecodinium cohnii</em>, a protist renowned for its high docosahexaenoic acid (DHA) production, has an unclear mechanism for converting docosapentaenoic acid (DPA) into DHA. This study employed transcriptomic analysis to investigate the effect of excessive oxygen limitation (EOL) on DHA biosynthesis, uncovering a novel oxygen-dependent pathway. The use of intermittent oxygen limitation (IOL) strategy significantly boosted DHA production. Five △4-fatty acid desaturase (FAD4) genes were identified, with CcFAD4_52534 exhibiting the highest catalytic efficiency and dual-functionality, converting eicosapentaenoic acid (EPA) to DPA, and subsequently to DHA. This study integrates transcriptomic insights, the discovery of the bifunctional CcFAD4_52534 enzyme, and the optimized IOL strategy, offering transformative potential for sustainable and high-yield DHA production through tailored genetic engineering in <em>C. cohnii</em>. This approach bridges ecological understanding with industrial innovation.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"424 ","pages":"Article 132292"},"PeriodicalIF":9.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425002585","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Crypthecodinium cohnii, a protist renowned for its high docosahexaenoic acid (DHA) production, has an unclear mechanism for converting docosapentaenoic acid (DPA) into DHA. This study employed transcriptomic analysis to investigate the effect of excessive oxygen limitation (EOL) on DHA biosynthesis, uncovering a novel oxygen-dependent pathway. The use of intermittent oxygen limitation (IOL) strategy significantly boosted DHA production. Five △4-fatty acid desaturase (FAD4) genes were identified, with CcFAD4_52534 exhibiting the highest catalytic efficiency and dual-functionality, converting eicosapentaenoic acid (EPA) to DPA, and subsequently to DHA. This study integrates transcriptomic insights, the discovery of the bifunctional CcFAD4_52534 enzyme, and the optimized IOL strategy, offering transformative potential for sustainable and high-yield DHA production through tailored genetic engineering in C. cohnii. This approach bridges ecological understanding with industrial innovation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐翅虫(Crypthecodinium cohnii)是一种以生产大量二十二碳六烯酸(DHA)而闻名的原生动物,但其将二十二碳五烯酸(DPA)转化为 DHA 的机制尚不清楚。本研究利用转录组分析来研究过度氧限制(EOL)对 DHA 生物合成的影响,发现了一种新的氧气依赖途径。使用间歇性氧限制(IOL)策略显著提高了DHA的产量。研究发现了五个△4-脂肪酸去饱和酶(FAD4)基因,其中CcFAD4_52534具有最高的催化效率和双重功能,可将二十碳五烯酸(EPA)转化为DPA,进而转化为DHA。这项研究综合了转录组学的见解、双功能 CcFAD4_52534 酶的发现以及优化的 IOL 策略,通过对 C. cohnii 进行量身定制的基因工程,为可持续高产 DHA 生产提供了变革性的潜力。这种方法是生态理解与工业创新的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Editorial Board Efficient immobilization of cellulase on polydopamine-modified nickel foam for enhanced lignocellulose conversion Impact of indigenous vs. cultivated microalgae strains on biomass accumulation, microbial community composition, and nutrient removal in algae-based dairy wastewater treatment Static magnetic field-enhanced cathodic electrocatalysis of Fe3O4-based nitrogen-doped carbon for improving the performance of microbial fuel cells Multifactorial interaction and influence of culture conditions on yellow fluorescent protein production in Phaeodactylum tricornutum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1