KEAP1-NRF2/HO-1 Pathway Promotes Ferroptosis and Neuronal Injury in Schizophrenia

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES Brain and Behavior Pub Date : 2025-02-28 DOI:10.1002/brb3.70311
Feng Zhu, Tangqun Dan, Shuguang Hua
{"title":"KEAP1-NRF2/HO-1 Pathway Promotes Ferroptosis and Neuronal Injury in Schizophrenia","authors":"Feng Zhu,&nbsp;Tangqun Dan,&nbsp;Shuguang Hua","doi":"10.1002/brb3.70311","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>This study investigates the role of the KEAP1-NRF2/HO-1 signaling pathway in inducing ferroptosis and contributing to neuronal damage in schizophrenia.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We retrieved schizophrenia-related data and ferroptosis-related genes from the RNA microarray dataset GSE27383 and FerrDB database, respectively. Bioinformatics data identified KEAP1 as a downregulated gene, which was validated using qRT-PCR and Western blot. We assessed intracellular Fe<sup>2</sup>⁺ content, MDA levels, GSH, and GPX4 in the prefrontal cortex and peripheral blood mononuclear cells (PBMCs) of patients with schizophrenia. Cortical interneurons (cINs) were generated from human-induced pluripotent stem cells (hiPSCs) of patients with schizophrenia and used to explore KEAP1 alterations during neurodevelopment. In addition, KEAP1 overexpression was induced in cINs via transfection with pcDNA KEAP1. The intracellular Fe⁺ levels, oxidative stress indicators, lipid peroxidation, and inflammatory cytokines were measured after transfection. To investigate molecular mechanisms, KI696—a high-affinity probe that disrupts the KEAP1–NRF2 interaction—was applied, and changes in oxidative stress, lipid peroxidation (C11-BODIPY staining), iron metabolism, and inflammatory pathways were evaluated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Patients with schizophrenia exhibited underexpression of KEAP1, a key regulator of ferroptosis, along with elevated intracellular Fe<sup>2</sup>⁺ levels and increased MDA concentrations, indicating enhanced lipid peroxidation and oxidative stress. Reduced GPX4 activity and GSH levels were also observed, suggesting an increased susceptibility to ferroptosis. To further explore this, cINs derived from hiPSCs of patients with schizophrenia were studied. These cells showed decreased KEAP1 expression. Overexpression of KEAP1 in cINs led to a reduction in intracellular Fe<sup>2</sup>⁺ concentrations and oxidative damage, highlighting KEAP1's regulatory role in ferroptosis. In addition, treatment with KI696 induced significant alterations in pathways related to oxidative stress, iron metabolism, antioxidant defenses, and inflammation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Our findings indicate that the KEAP1-NRF2/HO-1 pathway contributes to ferroptosis and neuronal injury in schizophrenia.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"15 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70311","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70311","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

This study investigates the role of the KEAP1-NRF2/HO-1 signaling pathway in inducing ferroptosis and contributing to neuronal damage in schizophrenia.

Methods

We retrieved schizophrenia-related data and ferroptosis-related genes from the RNA microarray dataset GSE27383 and FerrDB database, respectively. Bioinformatics data identified KEAP1 as a downregulated gene, which was validated using qRT-PCR and Western blot. We assessed intracellular Fe2⁺ content, MDA levels, GSH, and GPX4 in the prefrontal cortex and peripheral blood mononuclear cells (PBMCs) of patients with schizophrenia. Cortical interneurons (cINs) were generated from human-induced pluripotent stem cells (hiPSCs) of patients with schizophrenia and used to explore KEAP1 alterations during neurodevelopment. In addition, KEAP1 overexpression was induced in cINs via transfection with pcDNA KEAP1. The intracellular Fe⁺ levels, oxidative stress indicators, lipid peroxidation, and inflammatory cytokines were measured after transfection. To investigate molecular mechanisms, KI696—a high-affinity probe that disrupts the KEAP1–NRF2 interaction—was applied, and changes in oxidative stress, lipid peroxidation (C11-BODIPY staining), iron metabolism, and inflammatory pathways were evaluated.

Results

Patients with schizophrenia exhibited underexpression of KEAP1, a key regulator of ferroptosis, along with elevated intracellular Fe2⁺ levels and increased MDA concentrations, indicating enhanced lipid peroxidation and oxidative stress. Reduced GPX4 activity and GSH levels were also observed, suggesting an increased susceptibility to ferroptosis. To further explore this, cINs derived from hiPSCs of patients with schizophrenia were studied. These cells showed decreased KEAP1 expression. Overexpression of KEAP1 in cINs led to a reduction in intracellular Fe2⁺ concentrations and oxidative damage, highlighting KEAP1's regulatory role in ferroptosis. In addition, treatment with KI696 induced significant alterations in pathways related to oxidative stress, iron metabolism, antioxidant defenses, and inflammation.

Conclusion

Our findings indicate that the KEAP1-NRF2/HO-1 pathway contributes to ferroptosis and neuronal injury in schizophrenia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain and Behavior
Brain and Behavior BEHAVIORAL SCIENCES-NEUROSCIENCES
CiteScore
5.30
自引率
0.00%
发文量
352
审稿时长
14 weeks
期刊介绍: Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior. * [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica) * [Addiction Biology](https://publons.com/journal/1523/addiction-biology) * [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior) * [Brain Pathology](https://publons.com/journal/1787/brain-pathology) * [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development) * [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health) * [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety) * Developmental Neurobiology * [Developmental Science](https://publons.com/journal/1069/developmental-science) * [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience) * [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior) * [GLIA](https://publons.com/journal/1287/glia) * [Hippocampus](https://publons.com/journal/1056/hippocampus) * [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping) * [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour) * [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology) * [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging) * [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research) * [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior) * [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system) * [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve) * [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)
期刊最新文献
A Preliminary Study of Effect of Melatonin on Inflammation and Hypoxia-Related Factors in a Mouse Model of Elastase-Induced Intracranial Aneurysm Loving-Kindness Meditation: Systematic Review of Neuroimaging Correlates in Long-Term Practitioners and Clinical Implications Baseline Functional Connectivity of the Mesolimbic, Salience, and Sensorimotor Systems Predicts Responses to Psychological Therapies for Chronic Low Back Pain With Comorbid Depression: A Functional MRI Study KEAP1-NRF2/HO-1 Pathway Promotes Ferroptosis and Neuronal Injury in Schizophrenia Cerebral Venous Thrombosis and Nitrous Oxide Intoxication: Report of Two Cases and Review of the Literature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1