{"title":"Dapagliflozin inhibits ferroptosis and ameliorates renal fibrosis in diabetic C57BL/6J mice.","authors":"Zhen Zhang, Luxin Li, Yucen Dai, Yifei Lian, Haixu Song, Xin Dai, Ranyu Su, Jiaxing Yin, Ruimin Gu","doi":"10.1038/s41598-025-91278-4","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is a common complication of diabetes and a major cause of end-stage renal disease, with complex pathogenesis involving inflammation, oxidative stress, fibrosis, and ferroptosis. Ferroptosis is linked to DN progression, yet treatment options are limited, particularly for targeting ferroptosis. Dapagliflozin (DAPA), an SGLT2 inhibitor, shows renal protective effects in diabetes, but its role in renal fibrosis and ferroptosis in DN is unclear. This study investigated DAPA's effect on renal fibrosis in DN by inhibiting ferroptosis, using a streptozotocin-induced diabetic mouse model. Results indicated that DAPA improved renal function, reduced fibrosis, and suppressed ferroptosis markers in diabetic mice. In vitro, DAPA inhibited ferroptosis and fibrosis in HK-2 cells under high glucose conditions. Molecular docking and network pharmacology suggested DAPA's anti-fibrotic and anti-ferroptotic effects may involve the Nrf2 and TGF-β signaling pathways. DAPA also reduced serum creatinine and blood urea nitrogen in diabetic mice, improved glomerulosclerosis and interstitial fibrosis, decreased iron deposition, and enhanced antioxidant activity. Overall, DAPA's multi-target mechanisms significantly improve DN progression, suggesting its potential as a targeted therapy against ferroptosis. Future studies should further explore DAPA's applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7117"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91278-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes and a major cause of end-stage renal disease, with complex pathogenesis involving inflammation, oxidative stress, fibrosis, and ferroptosis. Ferroptosis is linked to DN progression, yet treatment options are limited, particularly for targeting ferroptosis. Dapagliflozin (DAPA), an SGLT2 inhibitor, shows renal protective effects in diabetes, but its role in renal fibrosis and ferroptosis in DN is unclear. This study investigated DAPA's effect on renal fibrosis in DN by inhibiting ferroptosis, using a streptozotocin-induced diabetic mouse model. Results indicated that DAPA improved renal function, reduced fibrosis, and suppressed ferroptosis markers in diabetic mice. In vitro, DAPA inhibited ferroptosis and fibrosis in HK-2 cells under high glucose conditions. Molecular docking and network pharmacology suggested DAPA's anti-fibrotic and anti-ferroptotic effects may involve the Nrf2 and TGF-β signaling pathways. DAPA also reduced serum creatinine and blood urea nitrogen in diabetic mice, improved glomerulosclerosis and interstitial fibrosis, decreased iron deposition, and enhanced antioxidant activity. Overall, DAPA's multi-target mechanisms significantly improve DN progression, suggesting its potential as a targeted therapy against ferroptosis. Future studies should further explore DAPA's applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.