Min Zhu, Ping Guo, Xianghua Liu, Hao Zhang, Salwa Othmen, Chahira Lhioui, Aymen Flah, Ivo Perg
{"title":"A new approach to interference cancellation in D2D 5G uplink via Non orthogonal convex optimization.","authors":"Min Zhu, Ping Guo, Xianghua Liu, Hao Zhang, Salwa Othmen, Chahira Lhioui, Aymen Flah, Ivo Perg","doi":"10.1038/s41598-025-92026-4","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous communication modes in 5G demand integrated device connections, resource availability, and high capacity for meeting user demands. The radio resource allocation and usage for massive users results in interference between the device-to-device (D2D) uplink channels. This issue is addressed using a Non-orthogonal Convex Optimization Problem (NCOP) that identifies the chances of self-interference cancellations. This technique classifies interference and non-interference allocations in the rate of uplink communications. The channel reassignment is addressed as an NCOP based on the available interference levels. The interference levels before and after allocation and reallocation are analyzed under convex optimization. The interference cancellation convergence is computed for both channels wherein the transfer switching is performed. The convergence rate is estimated using the interference level and the number of channels reassigned for the uplink devices. Hence, the self-interference cancellation relies on non-convex channel allocations across various switching in this case. This feature is revisited if the D2D channels exceed their capacity for communication. Therefore, the 5G communication features coexist with the D2D uplinks for interference cancellations to improve channel allocation. For the SNR = 45dBm, the proposed NCOP reduces 12.4% of channel reassignment by augmenting 9.24% of interference cancellation.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7253"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92026-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous communication modes in 5G demand integrated device connections, resource availability, and high capacity for meeting user demands. The radio resource allocation and usage for massive users results in interference between the device-to-device (D2D) uplink channels. This issue is addressed using a Non-orthogonal Convex Optimization Problem (NCOP) that identifies the chances of self-interference cancellations. This technique classifies interference and non-interference allocations in the rate of uplink communications. The channel reassignment is addressed as an NCOP based on the available interference levels. The interference levels before and after allocation and reallocation are analyzed under convex optimization. The interference cancellation convergence is computed for both channels wherein the transfer switching is performed. The convergence rate is estimated using the interference level and the number of channels reassigned for the uplink devices. Hence, the self-interference cancellation relies on non-convex channel allocations across various switching in this case. This feature is revisited if the D2D channels exceed their capacity for communication. Therefore, the 5G communication features coexist with the D2D uplinks for interference cancellations to improve channel allocation. For the SNR = 45dBm, the proposed NCOP reduces 12.4% of channel reassignment by augmenting 9.24% of interference cancellation.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.