Bahaaeldeen M Elgarba, Saleem Ali, Rocharles Cavalcante Fontenele, Jan Meeus, Reinhilde Jacobs
{"title":"An AI-based tool for prosthetic crown segmentation serving automated intraoral scan-to-CBCT registration in challenging high artifact scenarios.","authors":"Bahaaeldeen M Elgarba, Saleem Ali, Rocharles Cavalcante Fontenele, Jan Meeus, Reinhilde Jacobs","doi":"10.1016/j.prosdent.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Statement of problem: </strong>Accurately registering intraoral and cone beam computed tomography (CBCT) scans in patients with metal artifacts poses a significant challenge. Whether a cloud-based platform trained for artificial intelligence (AI)-driven segmentation can improve registration is unclear.</p><p><strong>Purpose: </strong>The purpose of this clinical study was to validate a cloud-based platform trained for the AI-driven segmentation of prosthetic crowns on CBCT scans and subsequent multimodal intraoral scan-to-CBCT registration in the presence of high metal artifact expression.</p><p><strong>Material and methods: </strong>A dataset consisting of 30 time-matched maxillary and mandibular CBCT and intraoral scans, each containing at least 4 prosthetic crowns, was collected. CBCT acquisition involved placing cotton rolls between the cheeks and teeth to facilitate soft tissue delineation. Segmentation and registration were compared using either a semi-automated (SA) method or an AI-automated (AA). SA served as clinical reference, where prosthetic crowns and their radicular parts (natural roots or implants) were threshold-based segmented with point surface-based registration. The AA method included fully automated segmentation and registration based on AI algorithms. Quantitative assessment compared AA's median surface deviation (MSD) and root mean square (RMS) in crown segmentation and subsequent intraoral scan-to-CBCT registration with those of SA. Additionally, segmented crown STL files were voxel-wise analyzed for comparison between AA and SA. A qualitative assessment of AA-based crown segmentation evaluated the need for refinement, while the AA-based registration assessment scrutinized the alignment of the registered-intraoral scan with the CBCT teeth and soft tissue contours. Ultimately, the study compared the time efficiency and consistency of both methods. Quantitative outcomes were analyzed with the Kruskal-Wallis, Mann-Whitney, and Student t tests, and qualitative outcomes with the Wilcoxon test (all α=.05). Consistency was evaluated by using the intraclass correlation coefficient (ICC).</p><p><strong>Results: </strong>Quantitatively, AA methods excelled with a 0.91 Dice Similarity Coefficient for crown segmentation and an MSD of 0.03 ±0.05 mm for intraoral scan-to-CBCT registration. Additionally, AA achieved 91% clinically acceptable matches of teeth and gingiva on CBCT scans, surpassing SA method's 80%. Furthermore, AA was significantly faster than SA (P<.05), being 200 times faster in segmentation and 4.5 times faster in registration. Both AA and SA exhibited excellent consistency in segmentation and registration, with ICC values of 0.99 and 1 for AA and 0.99 and 0.96 for SA, respectively.</p><p><strong>Conclusions: </strong>The novel cloud-based platform demonstrated accurate, consistent, and time-efficient prosthetic crown segmentation, as well as intraoral scan-to-CBCT registration in scenarios with high artifact expression.</p>","PeriodicalId":16866,"journal":{"name":"Journal of Prosthetic Dentistry","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Prosthetic Dentistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.prosdent.2025.02.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Statement of problem: Accurately registering intraoral and cone beam computed tomography (CBCT) scans in patients with metal artifacts poses a significant challenge. Whether a cloud-based platform trained for artificial intelligence (AI)-driven segmentation can improve registration is unclear.
Purpose: The purpose of this clinical study was to validate a cloud-based platform trained for the AI-driven segmentation of prosthetic crowns on CBCT scans and subsequent multimodal intraoral scan-to-CBCT registration in the presence of high metal artifact expression.
Material and methods: A dataset consisting of 30 time-matched maxillary and mandibular CBCT and intraoral scans, each containing at least 4 prosthetic crowns, was collected. CBCT acquisition involved placing cotton rolls between the cheeks and teeth to facilitate soft tissue delineation. Segmentation and registration were compared using either a semi-automated (SA) method or an AI-automated (AA). SA served as clinical reference, where prosthetic crowns and their radicular parts (natural roots or implants) were threshold-based segmented with point surface-based registration. The AA method included fully automated segmentation and registration based on AI algorithms. Quantitative assessment compared AA's median surface deviation (MSD) and root mean square (RMS) in crown segmentation and subsequent intraoral scan-to-CBCT registration with those of SA. Additionally, segmented crown STL files were voxel-wise analyzed for comparison between AA and SA. A qualitative assessment of AA-based crown segmentation evaluated the need for refinement, while the AA-based registration assessment scrutinized the alignment of the registered-intraoral scan with the CBCT teeth and soft tissue contours. Ultimately, the study compared the time efficiency and consistency of both methods. Quantitative outcomes were analyzed with the Kruskal-Wallis, Mann-Whitney, and Student t tests, and qualitative outcomes with the Wilcoxon test (all α=.05). Consistency was evaluated by using the intraclass correlation coefficient (ICC).
Results: Quantitatively, AA methods excelled with a 0.91 Dice Similarity Coefficient for crown segmentation and an MSD of 0.03 ±0.05 mm for intraoral scan-to-CBCT registration. Additionally, AA achieved 91% clinically acceptable matches of teeth and gingiva on CBCT scans, surpassing SA method's 80%. Furthermore, AA was significantly faster than SA (P<.05), being 200 times faster in segmentation and 4.5 times faster in registration. Both AA and SA exhibited excellent consistency in segmentation and registration, with ICC values of 0.99 and 1 for AA and 0.99 and 0.96 for SA, respectively.
Conclusions: The novel cloud-based platform demonstrated accurate, consistent, and time-efficient prosthetic crown segmentation, as well as intraoral scan-to-CBCT registration in scenarios with high artifact expression.
期刊介绍:
The Journal of Prosthetic Dentistry is the leading professional journal devoted exclusively to prosthetic and restorative dentistry. The Journal is the official publication for 24 leading U.S. international prosthodontic organizations. The monthly publication features timely, original peer-reviewed articles on the newest techniques, dental materials, and research findings. The Journal serves prosthodontists and dentists in advanced practice, and features color photos that illustrate many step-by-step procedures. The Journal of Prosthetic Dentistry is included in Index Medicus and CINAHL.