Efficient intelligent fault diagnosis method and graphical user interface development based on fusion of convolutional networks and vision transformers characteristics.
Chaoquan Mo, Ke Huang, Houxin Ji, Wenhan Li, Kaibo Xu
{"title":"Efficient intelligent fault diagnosis method and graphical user interface development based on fusion of convolutional networks and vision transformers characteristics.","authors":"Chaoquan Mo, Ke Huang, Houxin Ji, Wenhan Li, Kaibo Xu","doi":"10.1038/s41598-025-88668-z","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional Neural Networks have been widely applied in fault diagnosis tasks of mechanical systems due to their strong feature extraction and classification capabilities. However, they have limitations in handling global context information. Vision Transformers, by leveraging self-attention mechanisms to capture global dependencies, have shown excellent performance in many visual tasks, but often come with high computational costs. Therefore, this paper proposes a lightweight and efficient intelligent fault diagnosis method based on the fusion of Convolutional Network and Vision Transformer features (FCNVT). This method combines the local feature extraction capability of CNNs with the global dependency capturing ability of ViTs, while maintaining computational efficiency. Random overlapping sampling (ROS) techniques are used to preprocess signals, generating two-dimensional synchronized wavelet transform (SWT) images as inputs to the network. Experimental verification has shown that the proposed method achieves up to 100% classification accuracy, with the model having 7 million parameters and a computational cost of only 0.28 G, outperforming other state-of-the-art methods. Finally, a graphical user interface (GUI)-based mechanical equipment fault detection system was developed using this method, which holds positive implications for advancing the practical application of intelligent fault diagnosis in mechanical equipment.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7110"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868373/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88668-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional Neural Networks have been widely applied in fault diagnosis tasks of mechanical systems due to their strong feature extraction and classification capabilities. However, they have limitations in handling global context information. Vision Transformers, by leveraging self-attention mechanisms to capture global dependencies, have shown excellent performance in many visual tasks, but often come with high computational costs. Therefore, this paper proposes a lightweight and efficient intelligent fault diagnosis method based on the fusion of Convolutional Network and Vision Transformer features (FCNVT). This method combines the local feature extraction capability of CNNs with the global dependency capturing ability of ViTs, while maintaining computational efficiency. Random overlapping sampling (ROS) techniques are used to preprocess signals, generating two-dimensional synchronized wavelet transform (SWT) images as inputs to the network. Experimental verification has shown that the proposed method achieves up to 100% classification accuracy, with the model having 7 million parameters and a computational cost of only 0.28 G, outperforming other state-of-the-art methods. Finally, a graphical user interface (GUI)-based mechanical equipment fault detection system was developed using this method, which holds positive implications for advancing the practical application of intelligent fault diagnosis in mechanical equipment.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.