Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants.

IF 2.1 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS PROTEOMICS – Clinical Applications Pub Date : 2025-02-27 DOI:10.1002/prca.70002
Jeong Min Cho, Minsang Kim, Jaeik Oh, Jung Hun Koh, Semin Cho, Yaerim Kim, Soojin Lee, Kwangsoo Kim, Yong Chul Kim, Seung Seok Han, Kwon-Wook Joo, Yon Su Kim, Hajeong Lee, Dong Ki Kim, Sehoon Park
{"title":"Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants.","authors":"Jeong Min Cho, Minsang Kim, Jaeik Oh, Jung Hun Koh, Semin Cho, Yaerim Kim, Soojin Lee, Kwangsoo Kim, Yong Chul Kim, Seung Seok Han, Kwon-Wook Joo, Yon Su Kim, Hajeong Lee, Dong Ki Kim, Sehoon Park","doi":"10.1002/prca.70002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Chronic kidney disease (CKD) causes detrimental systemic effects, including inflammation or apoptosis, which lead to substantial morbidity and mortality. However, the causal effect of reduced kidney function on systemic proteomic signatures is incompletely understood.</p><p><strong>Methods: </strong>We performed an integrated Mendelian randomization (MR) and observational analyses to identify the causal association between kidney function and plasma protein levels, based on 1815 plasma protein profiles in 50,407 UK Biobank participants and the CKDGen Phase 4 genome-wide association study (GWAS) meta-analysis for the genetic instruments of eGFR.</p><p><strong>Results: </strong>The MR analysis revealed 383 plasma proteins causally associated with eGFR. Reduced kidney function was found to be causally associated with an increase in the plasma levels of 381 proteins, among which TNF and IGFBP4 were increased, while the level of two proteins, NPHS1 and SPOCK1, decreased. Apoptosis-related pathway was significantly enriched in the gene-set enrichment analysis. In network analysis, TNF was identified as a hub protein with multiple linkages to molecules included in the TNF-signaling pathways, involved in inflammation, fibrosis, and apoptosis.</p><p><strong>Conclusions: </strong>In this proteo-genomic analysis, we identified 383 plasma proteins causally associated with eGFR, highlighting TNF-associated pathways as pathologically relevant processes in kidney disease progression, systemic inflammation, and organ fibrosis, warranting further investigation.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e70002"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Chronic kidney disease (CKD) causes detrimental systemic effects, including inflammation or apoptosis, which lead to substantial morbidity and mortality. However, the causal effect of reduced kidney function on systemic proteomic signatures is incompletely understood.

Methods: We performed an integrated Mendelian randomization (MR) and observational analyses to identify the causal association between kidney function and plasma protein levels, based on 1815 plasma protein profiles in 50,407 UK Biobank participants and the CKDGen Phase 4 genome-wide association study (GWAS) meta-analysis for the genetic instruments of eGFR.

Results: The MR analysis revealed 383 plasma proteins causally associated with eGFR. Reduced kidney function was found to be causally associated with an increase in the plasma levels of 381 proteins, among which TNF and IGFBP4 were increased, while the level of two proteins, NPHS1 and SPOCK1, decreased. Apoptosis-related pathway was significantly enriched in the gene-set enrichment analysis. In network analysis, TNF was identified as a hub protein with multiple linkages to molecules included in the TNF-signaling pathways, involved in inflammation, fibrosis, and apoptosis.

Conclusions: In this proteo-genomic analysis, we identified 383 plasma proteins causally associated with eGFR, highlighting TNF-associated pathways as pathologically relevant processes in kidney disease progression, systemic inflammation, and organ fibrosis, warranting further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PROTEOMICS – Clinical Applications
PROTEOMICS – Clinical Applications 医学-生化研究方法
CiteScore
5.20
自引率
5.00%
发文量
50
审稿时长
1 months
期刊介绍: PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including: -basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease -the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers -the use of proteomics for the discovery of novel drug targets -the application of proteomics in the drug development pipeline -the use of proteomics as a component of clinical trials.
期刊最新文献
Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants. Proteome of Renal Tubuli and Serum Differentiate Pre-Existing Type 2 Diabetes and Post-Transplant Diabetes in Kidney Transplant Recipients. Intramural Administration of Translational Inhibitor Puromycin Upon Balloon Angioplasty Inhibits SMC Proliferation and Protein Synthesis-Vascular Proteome Profiling Analysis. Salivary Proteome Is Altered in Children With Small Area Thermal Burns. Systemic Changes in Early Pregnancy in the Mare: An Integrated Proteomic Analysis of Blood Plasma, Histotroph, and Yolk Sac Fluid at Day 14 Post-Ovulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1