Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants.
Jeong Min Cho, Minsang Kim, Jaeik Oh, Jung Hun Koh, Semin Cho, Yaerim Kim, Soojin Lee, Kwangsoo Kim, Yong Chul Kim, Seung Seok Han, Kwon-Wook Joo, Yon Su Kim, Hajeong Lee, Dong Ki Kim, Sehoon Park
{"title":"Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants.","authors":"Jeong Min Cho, Minsang Kim, Jaeik Oh, Jung Hun Koh, Semin Cho, Yaerim Kim, Soojin Lee, Kwangsoo Kim, Yong Chul Kim, Seung Seok Han, Kwon-Wook Joo, Yon Su Kim, Hajeong Lee, Dong Ki Kim, Sehoon Park","doi":"10.1002/prca.70002","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Chronic kidney disease (CKD) causes detrimental systemic effects, including inflammation or apoptosis, which lead to substantial morbidity and mortality. However, the causal effect of reduced kidney function on systemic proteomic signatures is incompletely understood.</p><p><strong>Methods: </strong>We performed an integrated Mendelian randomization (MR) and observational analyses to identify the causal association between kidney function and plasma protein levels, based on 1815 plasma protein profiles in 50,407 UK Biobank participants and the CKDGen Phase 4 genome-wide association study (GWAS) meta-analysis for the genetic instruments of eGFR.</p><p><strong>Results: </strong>The MR analysis revealed 383 plasma proteins causally associated with eGFR. Reduced kidney function was found to be causally associated with an increase in the plasma levels of 381 proteins, among which TNF and IGFBP4 were increased, while the level of two proteins, NPHS1 and SPOCK1, decreased. Apoptosis-related pathway was significantly enriched in the gene-set enrichment analysis. In network analysis, TNF was identified as a hub protein with multiple linkages to molecules included in the TNF-signaling pathways, involved in inflammation, fibrosis, and apoptosis.</p><p><strong>Conclusions: </strong>In this proteo-genomic analysis, we identified 383 plasma proteins causally associated with eGFR, highlighting TNF-associated pathways as pathologically relevant processes in kidney disease progression, systemic inflammation, and organ fibrosis, warranting further investigation.</p>","PeriodicalId":20571,"journal":{"name":"PROTEOMICS – Clinical Applications","volume":" ","pages":"e70002"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROTEOMICS – Clinical Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/prca.70002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Chronic kidney disease (CKD) causes detrimental systemic effects, including inflammation or apoptosis, which lead to substantial morbidity and mortality. However, the causal effect of reduced kidney function on systemic proteomic signatures is incompletely understood.
Methods: We performed an integrated Mendelian randomization (MR) and observational analyses to identify the causal association between kidney function and plasma protein levels, based on 1815 plasma protein profiles in 50,407 UK Biobank participants and the CKDGen Phase 4 genome-wide association study (GWAS) meta-analysis for the genetic instruments of eGFR.
Results: The MR analysis revealed 383 plasma proteins causally associated with eGFR. Reduced kidney function was found to be causally associated with an increase in the plasma levels of 381 proteins, among which TNF and IGFBP4 were increased, while the level of two proteins, NPHS1 and SPOCK1, decreased. Apoptosis-related pathway was significantly enriched in the gene-set enrichment analysis. In network analysis, TNF was identified as a hub protein with multiple linkages to molecules included in the TNF-signaling pathways, involved in inflammation, fibrosis, and apoptosis.
Conclusions: In this proteo-genomic analysis, we identified 383 plasma proteins causally associated with eGFR, highlighting TNF-associated pathways as pathologically relevant processes in kidney disease progression, systemic inflammation, and organ fibrosis, warranting further investigation.
期刊介绍:
PROTEOMICS - Clinical Applications has developed into a key source of information in the field of applying proteomics to the study of human disease and translation to the clinic. With 12 issues per year, the journal will publish papers in all relevant areas including:
-basic proteomic research designed to further understand the molecular mechanisms underlying dysfunction in human disease
-the results of proteomic studies dedicated to the discovery and validation of diagnostic and prognostic disease biomarkers
-the use of proteomics for the discovery of novel drug targets
-the application of proteomics in the drug development pipeline
-the use of proteomics as a component of clinical trials.