Interfacial dielectric enhancement in MXene/PVDF nanocomposites via hydrogen bond-induced dipole modulation

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-02-28 DOI:10.1016/j.apsusc.2025.162837
Bo Liu, Xu Zhang, Bei Li, Xin Zhang
{"title":"Interfacial dielectric enhancement in MXene/PVDF nanocomposites via hydrogen bond-induced dipole modulation","authors":"Bo Liu, Xu Zhang, Bei Li, Xin Zhang","doi":"10.1016/j.apsusc.2025.162837","DOIUrl":null,"url":null,"abstract":"Poly(vinylidene fluoride) (PVDF)-based dielectric composites utilizing two-dimensional (2D) MXenes as nanofillers have recently exhibited significantly enhanced dielectric properties and energy densities that are highly desirable for flexible electronics and electrostatic energy storage applications. However, nanoscale-resolved insights into the underlying mechanisms of the enhancement of interfacial dielectric responses in MXene/PVDF composites are still unclear and of critical importance. Herein, we perform first-principles calculations to explore quantum-informed structural and dielectric properties of Ti<sub>3</sub>C<sub>2</sub>T<em><sub>x</sub></em> MXene/PVDF interfaces. It is shown that the discovered dielectric enhancement is mainly attributed to the structural and electronic variations enabled by the interfacial dipole engineering resulting from the OH-terminated MXenes, including transformation of PVDF chain dipole orientation (i.e., from parallel orientation (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mo stretchy=\"false\" is=\"true\"&gt;&amp;#x2016;&lt;/mo&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -498.8 1057.4 947.9\" width=\"2.456ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,-187)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2225\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">μ</mi><mo is=\"true\" stretchy=\"false\">‖</mo></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">μ</mi><mo stretchy=\"false\" is=\"true\">‖</mo></msub></math></script></span>) on Ti<sub>3</sub>C<sub>2</sub>O<sub>2</sub> to perpendicular orientation (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;mo is=\"true\"&gt;&amp;#x22A5;&lt;/mo&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.855ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -498.8 1254 798.9\" width=\"2.912ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(603,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-22A5\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">μ</mi><mo is=\"true\">⊥</mo></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">μ</mi><mo is=\"true\">⊥</mo></msub></math></script></span>) on Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub>) and induced interfacial charge transfer and accumulation. The as-formed hydrogen bonding at the interface also provides strong interfacial coupling, enhanced comparability, dipole moment and bandgap manipulation, endowing the Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub>/PVDF nanocomposite with elevated dielectric permittivity and electric breakdown strength simultaneously. The findings in this work are envisioned to offer electronic/atomic scale understanding and intuitive guidelines for inspiring design and application of polymer-based dielectric composites via rational hydrogen bond-induced dipole modulation.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"25 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162837","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Poly(vinylidene fluoride) (PVDF)-based dielectric composites utilizing two-dimensional (2D) MXenes as nanofillers have recently exhibited significantly enhanced dielectric properties and energy densities that are highly desirable for flexible electronics and electrostatic energy storage applications. However, nanoscale-resolved insights into the underlying mechanisms of the enhancement of interfacial dielectric responses in MXene/PVDF composites are still unclear and of critical importance. Herein, we perform first-principles calculations to explore quantum-informed structural and dielectric properties of Ti3C2Tx MXene/PVDF interfaces. It is shown that the discovered dielectric enhancement is mainly attributed to the structural and electronic variations enabled by the interfacial dipole engineering resulting from the OH-terminated MXenes, including transformation of PVDF chain dipole orientation (i.e., from parallel orientation (μ) on Ti3C2O2 to perpendicular orientation (μ) on Ti3C2(OH)2) and induced interfacial charge transfer and accumulation. The as-formed hydrogen bonding at the interface also provides strong interfacial coupling, enhanced comparability, dipole moment and bandgap manipulation, endowing the Ti3C2(OH)2/PVDF nanocomposite with elevated dielectric permittivity and electric breakdown strength simultaneously. The findings in this work are envisioned to offer electronic/atomic scale understanding and intuitive guidelines for inspiring design and application of polymer-based dielectric composites via rational hydrogen bond-induced dipole modulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二维(2D)MXene 作为纳米填料的聚偏二氟乙烯(PVDF)基介电复合材料最近表现出显著增强的介电性能和能量密度,这对于柔性电子器件和静电储能应用来说是非常理想的。然而,对于 MXene/PVDF 复合材料界面介电响应增强的内在机制,纳米尺度分辨的深入研究仍不清楚,这一点至关重要。在此,我们进行了第一性原理计算,以探索 Ti3C2Tx MXene/PVDF 界面的量子结构和介电特性。结果表明,所发现的介电性能增强主要归因于羟基封端 MXene 带来的界面偶极工程所产生的结构和电子变化,包括 PVDF 链偶极取向的转变(即从 Ti3C2O2 上的平行取向(μ‖μ‖)转变为 Ti3C2(OH)2 上的垂直取向(μ⊥μ⊥))以及诱导的界面电荷转移和积累。在界面上形成的氢键还提供了强大的界面耦合,增强了可比性、偶极矩和带隙操作,使 Ti3C2(OH)2/PVDF 纳米复合材料同时具有更高的介电常数和电击穿强度。这项研究成果有望通过合理的氢键诱导偶极子调制,为聚合物基介电复合材料的设计和应用提供电子/原子尺度的理解和直观指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Theoretical investigation to explore PdSnSe2-n/PdPSe (n = 0, 1, 2) heterostructures as advanced photocatalysts for water splitting applications Effective removal of Si contamination at the GaN regrowth interface through in-situ etching Improved biocompatibility of durable Si-DLC periodical nanocomposite coatings modified by plasma treatment for medical implants High efficiency removal OBS using a novel Fe-Co co-modified biochar activated peroxymonosulfate: Synergistic effects of Fe and Co Direct S-scheme SnS2/BN heterojunction: A promising photocatalyst for overall water splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1