{"title":"Thresholds in East Asian marginal seas circulation due to deglacial sea level rise","authors":"Xun Gong, Yang Yu, Xuefa Shi, Xiaopei Lin, Guangliang Liu, Zhi Dong, Xuesong Wang, Jiong Zheng, Lester Lembke-Jene, Gerrit Lohmann","doi":"10.1038/s41612-025-00927-y","DOIUrl":null,"url":null,"abstract":"<p>East Asian marginal seas (EAMS) circulation is closely configurated by sea level rise during the last deglaciation. Here, we perform simulations to reconstruct the EAMS circulation on the basis of sea levels from −90 to 0 m of the present, using a high-resolution regional ocean circulation model under present-day fixed surface and lateral boundary conditions. Our results show that the EAMS circulation underwent twice abrupt changes: a rapid initiation of its modern structure when sea level rise exceeded −40 m, followed by a temporary overshoot of the Japan-Sea throughflows at −5 m. These nonlinear processes are caused by the opening of the Soya Strait and thus formation of the modern EAMS-circulation structure, and a transient absence of the circulation resembling a Kuroshio Large Meander following around-island integral constraint, respectively. Conceptually, our findings introduce the around-island integral constraint on abrupt shift in the global marginal-sea circulation during the last deglaciation.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"15 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00927-y","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
East Asian marginal seas (EAMS) circulation is closely configurated by sea level rise during the last deglaciation. Here, we perform simulations to reconstruct the EAMS circulation on the basis of sea levels from −90 to 0 m of the present, using a high-resolution regional ocean circulation model under present-day fixed surface and lateral boundary conditions. Our results show that the EAMS circulation underwent twice abrupt changes: a rapid initiation of its modern structure when sea level rise exceeded −40 m, followed by a temporary overshoot of the Japan-Sea throughflows at −5 m. These nonlinear processes are caused by the opening of the Soya Strait and thus formation of the modern EAMS-circulation structure, and a transient absence of the circulation resembling a Kuroshio Large Meander following around-island integral constraint, respectively. Conceptually, our findings introduce the around-island integral constraint on abrupt shift in the global marginal-sea circulation during the last deglaciation.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.