Tian Yang , Fei Cao , Yihui Jiang , Yanfang Wang , Pengtao Li , Wei Zhou , Xingde Zhang , Di Huang , Shuhua Liang
{"title":"Investigation of current-carrying tribological properties and mechanisms of in-situ 2TiB2/Cu-3B composite","authors":"Tian Yang , Fei Cao , Yihui Jiang , Yanfang Wang , Pengtao Li , Wei Zhou , Xingde Zhang , Di Huang , Shuhua Liang","doi":"10.1016/j.triboint.2025.110612","DOIUrl":null,"url":null,"abstract":"<div><div>A novel 2TiB<sub>2</sub>/Cu-3B composite was fabricated via in-situ reactive casting technology, and its current-carrying tribological properties and wear mechanisms under sliding electrical contact conditions were systematically investigated. The synergistic effect between the anti-friction B phase and wear-resistant TiB<sub>2</sub> particles significantly enhanced the wear resistance of the composites. Compared with 2TiB<sub>2</sub>/Cu composite, the coefficient of friction and wear rate of the 2TiB<sub>2</sub>/Cu-3B composite decreased by 63 % and 89 %, respectively. The dual-phase reinforcements ensured efficient current transmission while minimizing friction. The anti-friction layer regenerated during friction, while the uniform distribution of wear-resistant phases prevented overheating and delamination. Based on these synergistic mechanisms, 2TiB<sub>2</sub>/Cu-3B composite exhibits excellent current-carrying and wear resistance properties, providing valuable insights for designing current-carrying materials in electrical contact applications.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"207 ","pages":"Article 110612"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001070","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel 2TiB2/Cu-3B composite was fabricated via in-situ reactive casting technology, and its current-carrying tribological properties and wear mechanisms under sliding electrical contact conditions were systematically investigated. The synergistic effect between the anti-friction B phase and wear-resistant TiB2 particles significantly enhanced the wear resistance of the composites. Compared with 2TiB2/Cu composite, the coefficient of friction and wear rate of the 2TiB2/Cu-3B composite decreased by 63 % and 89 %, respectively. The dual-phase reinforcements ensured efficient current transmission while minimizing friction. The anti-friction layer regenerated during friction, while the uniform distribution of wear-resistant phases prevented overheating and delamination. Based on these synergistic mechanisms, 2TiB2/Cu-3B composite exhibits excellent current-carrying and wear resistance properties, providing valuable insights for designing current-carrying materials in electrical contact applications.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.