Application of finite element analysis and computational fluid dynamics in machining AISI 4340 steel

IF 6.1 1区 工程技术 Q1 ENGINEERING, MECHANICAL Tribology International Pub Date : 2025-02-27 DOI:10.1016/j.triboint.2025.110616
Haniff A. Rahman , Jaharah A. Ghani , Mohammad Rasidi Mohammad Rasani , Wan Mohd. Faizal Wan Mahmood , Saima Yaaqob , Mohd Syafiq Abd Aziz
{"title":"Application of finite element analysis and computational fluid dynamics in machining AISI 4340 steel","authors":"Haniff A. Rahman ,&nbsp;Jaharah A. Ghani ,&nbsp;Mohammad Rasidi Mohammad Rasani ,&nbsp;Wan Mohd. Faizal Wan Mahmood ,&nbsp;Saima Yaaqob ,&nbsp;Mohd Syafiq Abd Aziz","doi":"10.1016/j.triboint.2025.110616","DOIUrl":null,"url":null,"abstract":"<div><div>AISI 4340 is a low-alloy steel with moderate carbon content that has garnered significant attention due to its remarkable properties, including high strength, toughness, and heat resistance. These characteristics make it highly desirable across industries such as construction, automotive, and aerospace. However, machining AISI 4340 poses substantial challenges due to the complex thermomechanical loading and high strain rates involved, which generate significant heat. This heat leads to accelerated tool wear, diminished productivity, and poor surface quality. High-speed machining (HSM) processes have shown promise in improving material removal rates and surface finish quality. However, the elevated temperatures in the cutting zone remain a critical concern, particularly in terms of tool durability. In response to these challenges, the development of virtual models has gained importance for reducing research time and costs. This review synthesizes relevant literature from the past decade, focusing on the application of Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) in machining processes involving AISI 4340 steel. It highlights the critical role of simulation techniques in optimizing machining processes, addressing key challenges, and improving overall operational efficiency and precision. For instance, FEA is extensively used for chip formation and machining response prediction, requiring careful consideration of cutting parameters and meshing quality to ensure accuracy. Meanwhile, CFD studies have primarily explored low cutting speeds and minimum quantity lubrication (MQL) systems, but not under high-speed cutting conditions. Most studies conducted have utilized FEA and CFD separately. Therefore, this review examines current trends and future directions, including the integration of CFD and FEA models for high-speed machining applications. Notably, most research on AISI 4340 machining has concentrated on improving cutting tools, optimizing cutting parameters, and advancing modelling techniques under dry machining conditions, but limited attention to coolant-assisted machining or Minimum Quantity Lubrication (MQL) application. Another identified research gaps, such as the limited exploration of integrated CFD-FEA models and high-speed machining under MQL conditions, provide avenues for future improvements in machining AISI 4340 steels.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"207 ","pages":"Article 110616"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X25001112","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

AISI 4340 is a low-alloy steel with moderate carbon content that has garnered significant attention due to its remarkable properties, including high strength, toughness, and heat resistance. These characteristics make it highly desirable across industries such as construction, automotive, and aerospace. However, machining AISI 4340 poses substantial challenges due to the complex thermomechanical loading and high strain rates involved, which generate significant heat. This heat leads to accelerated tool wear, diminished productivity, and poor surface quality. High-speed machining (HSM) processes have shown promise in improving material removal rates and surface finish quality. However, the elevated temperatures in the cutting zone remain a critical concern, particularly in terms of tool durability. In response to these challenges, the development of virtual models has gained importance for reducing research time and costs. This review synthesizes relevant literature from the past decade, focusing on the application of Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) in machining processes involving AISI 4340 steel. It highlights the critical role of simulation techniques in optimizing machining processes, addressing key challenges, and improving overall operational efficiency and precision. For instance, FEA is extensively used for chip formation and machining response prediction, requiring careful consideration of cutting parameters and meshing quality to ensure accuracy. Meanwhile, CFD studies have primarily explored low cutting speeds and minimum quantity lubrication (MQL) systems, but not under high-speed cutting conditions. Most studies conducted have utilized FEA and CFD separately. Therefore, this review examines current trends and future directions, including the integration of CFD and FEA models for high-speed machining applications. Notably, most research on AISI 4340 machining has concentrated on improving cutting tools, optimizing cutting parameters, and advancing modelling techniques under dry machining conditions, but limited attention to coolant-assisted machining or Minimum Quantity Lubrication (MQL) application. Another identified research gaps, such as the limited exploration of integrated CFD-FEA models and high-speed machining under MQL conditions, provide avenues for future improvements in machining AISI 4340 steels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Tribology International
Tribology International 工程技术-工程:机械
CiteScore
10.10
自引率
16.10%
发文量
627
审稿时长
35 days
期刊介绍: Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International. Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.
期刊最新文献
Finite element analysis and experimental study on fretting wear of different contact surfaces of fir-tree joint Prediction of high temperature thermal contact conductance considering radiation effects based on fractal theory Application of finite element analysis and computational fluid dynamics in machining AISI 4340 steel A novel Ni–Mo–W–V martensitic steel for hot working dies: Improved elevated–temperature mechanical properties and wear resistance via thermally stable MC nanoprecipitates Effect of Ti and TiN inter-layers on the composite interfacial wettability and composite abrasive wear resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1