Organic fertilizations alter the abundance and diversity of soil microbial genes involved in C, N, P mineralization in a coastal poplar plantation

IF 4.8 2区 农林科学 Q1 SOIL SCIENCE Applied Soil Ecology Pub Date : 2025-03-02 DOI:10.1016/j.apsoil.2025.106001
Tingting Ren , Jiahui Liao , Xiaoming Zou , Yuanyuan Li , Juanping Ni , Ke Shi , Long Jin , Manuel Delgado-Baquerizo , Honghua Ruan
{"title":"Organic fertilizations alter the abundance and diversity of soil microbial genes involved in C, N, P mineralization in a coastal poplar plantation","authors":"Tingting Ren ,&nbsp;Jiahui Liao ,&nbsp;Xiaoming Zou ,&nbsp;Yuanyuan Li ,&nbsp;Juanping Ni ,&nbsp;Ke Shi ,&nbsp;Long Jin ,&nbsp;Manuel Delgado-Baquerizo ,&nbsp;Honghua Ruan","doi":"10.1016/j.apsoil.2025.106001","DOIUrl":null,"url":null,"abstract":"<div><div>Organic fertilization supports the sustainability of managed ecosystems; however, investigations into how microbial-driven mineralization processes of carbon (C), nitrogen (N), and phosphorus (P) interact with soil functions under the application of organic fertilizers remain limited. We investigated the impacts of six years of applying biogas-slurry and biochar on the abundance and diversity of soil microbial genes involved in C, N, and P mineralization in a poplar plantation. Our findings indicated that the addition of biogas-slurry alone, as well as in combination with biochar, reduced the diversity of microbial genes involved in C, N, and P mineralization. The addition of biogas-slurry increased the abundance of these genes, but the application of biochar decreased it. Using thresholds from the eco-enzyme vector model, we found that the addition of biogas-slurry, either alone or in combination with biochar, alleviated microbial P limitation by decreasing the N:P ratio of microbial biomass and increasing soil dissolved organic C (DOC). Additionally, linear regression indicated that the alleviation of microbial P limitation suppressed the diversity of genes and promoted the abundance of genes involved in C mineralization. Random forest and partial dependence analyses showed that increased DOC was the major factor responsible for the decreased diversity of microbial genes and increased abundance of genes involved in N mineralization. The SOC: TN ratio was negatively correlated with the abundance of genes involved in N and P mineralization. These findings highlight the inconsistent responses of the abundance and diversity of microbial genes involved in C, N, and P mineralization to the application of organic fertilizers in managed ecosystems. Additionally, these varying responses are regulated by increasing nutrient supplies and alleviating microbial P limitation. Our findings provide a new understanding of soil carbon and nutrient cycling and suggest the application of organic fertilizers to facilitate the sustainable management of ecosystems in the future.</div></div>","PeriodicalId":8099,"journal":{"name":"Applied Soil Ecology","volume":"208 ","pages":"Article 106001"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soil Ecology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0929139325001398","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Organic fertilization supports the sustainability of managed ecosystems; however, investigations into how microbial-driven mineralization processes of carbon (C), nitrogen (N), and phosphorus (P) interact with soil functions under the application of organic fertilizers remain limited. We investigated the impacts of six years of applying biogas-slurry and biochar on the abundance and diversity of soil microbial genes involved in C, N, and P mineralization in a poplar plantation. Our findings indicated that the addition of biogas-slurry alone, as well as in combination with biochar, reduced the diversity of microbial genes involved in C, N, and P mineralization. The addition of biogas-slurry increased the abundance of these genes, but the application of biochar decreased it. Using thresholds from the eco-enzyme vector model, we found that the addition of biogas-slurry, either alone or in combination with biochar, alleviated microbial P limitation by decreasing the N:P ratio of microbial biomass and increasing soil dissolved organic C (DOC). Additionally, linear regression indicated that the alleviation of microbial P limitation suppressed the diversity of genes and promoted the abundance of genes involved in C mineralization. Random forest and partial dependence analyses showed that increased DOC was the major factor responsible for the decreased diversity of microbial genes and increased abundance of genes involved in N mineralization. The SOC: TN ratio was negatively correlated with the abundance of genes involved in N and P mineralization. These findings highlight the inconsistent responses of the abundance and diversity of microbial genes involved in C, N, and P mineralization to the application of organic fertilizers in managed ecosystems. Additionally, these varying responses are regulated by increasing nutrient supplies and alleviating microbial P limitation. Our findings provide a new understanding of soil carbon and nutrient cycling and suggest the application of organic fertilizers to facilitate the sustainable management of ecosystems in the future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Soil Ecology
Applied Soil Ecology 农林科学-土壤科学
CiteScore
9.70
自引率
4.20%
发文量
363
审稿时长
5.3 months
期刊介绍: Applied Soil Ecology addresses the role of soil organisms and their interactions in relation to: sustainability and productivity, nutrient cycling and other soil processes, the maintenance of soil functions, the impact of human activities on soil ecosystems and bio(techno)logical control of soil-inhabiting pests, diseases and weeds.
期刊最新文献
Gypsum application increases microbial activity and organic carbon mineralization in saline paddy soils Organic fertilizations alter the abundance and diversity of soil microbial genes involved in C, N, P mineralization in a coastal poplar plantation Rhizosphere soil microbial communities and nitrogen transformation response to forest fire smoke Environmental and microhabitat influences on microbiota of snow-active Collembola in sub-zero temperatures Responses and microbial mechanisms of greenhouse gas emissions and multifunctionality of soils at different elevations in Changbai Mountain under warming conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1