Yongxin Zheng , Yu Zhang , Yubiao Chen , Xiumei Deng , Baiyun Liu , Qiang Xu , Chuyun Qian , Zhihui Zhang , Ke Wang , Yuan Zeng , Zhenting Liang , Ling Sang , Lingbo Nong , Xiaoqing Liu , Yonghao Xu , Yimin Li , Yongbo Huang
{"title":"Indoleamine 2,3-dioxygenase 1 drives epithelial cells ferroptosis in influenza-induced acute lung injury","authors":"Yongxin Zheng , Yu Zhang , Yubiao Chen , Xiumei Deng , Baiyun Liu , Qiang Xu , Chuyun Qian , Zhihui Zhang , Ke Wang , Yuan Zeng , Zhenting Liang , Ling Sang , Lingbo Nong , Xiaoqing Liu , Yonghao Xu , Yimin Li , Yongbo Huang","doi":"10.1016/j.redox.2025.103572","DOIUrl":null,"url":null,"abstract":"<div><div>Acute lung injury (ALI) is a life-threatening complication of influenza A virus (IAV) infection, characterized by high morbidity and mortality. Recent studies have implicated ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation, in the pathogenesis of IAV-induced ALI. However, the underlying mechanisms and key regulators of IAV-induced ferroptosis remain largely unknown. In this study, we found that IAV infection induces predominant ferroptosis in alveolar and bronchial epithelial cells, contributing to tissue damage and the development of acute lung injury. Treatment with the ferroptosis inhibitor ferrostatin-1 improved survival, mitigated weight loss, and alleviated lung injury in IAV-infected mice. Mechanistically, IAV-induced ferroptosis was associated with excess lipid peroxidation, nitrative stress, and disrupted iron metabolism. Targeted lipidomic analysis revealed that phospholipid peroxidation is a crucial mechanism in IAV-induced ferroptosis. Importantly, we identified indoleamine 2,3-dioxygenase 1 (IDO1) as a key regulator of IAV-induced ferroptosis. IDO1 knockdown inhibited IAV-induced cell death, and reduced intracellular reactive oxygen species, peroxynitrite, and inducible nitric oxide synthase expression. Furthermore, pharmacological inhibition of IDO1 with 1-methyl-tryptophan improved ALI phenotype in IAV-infected mice. These findings highlight the critical role of ferroptosis in IAV-induced ALI pathogenesis and identify IDO1 as a potential therapeutic target for the treatment of this life-threatening condition.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103572"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000850","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is a life-threatening complication of influenza A virus (IAV) infection, characterized by high morbidity and mortality. Recent studies have implicated ferroptosis, a distinct form of regulated cell death characterized by iron-dependent lipid peroxidation, in the pathogenesis of IAV-induced ALI. However, the underlying mechanisms and key regulators of IAV-induced ferroptosis remain largely unknown. In this study, we found that IAV infection induces predominant ferroptosis in alveolar and bronchial epithelial cells, contributing to tissue damage and the development of acute lung injury. Treatment with the ferroptosis inhibitor ferrostatin-1 improved survival, mitigated weight loss, and alleviated lung injury in IAV-infected mice. Mechanistically, IAV-induced ferroptosis was associated with excess lipid peroxidation, nitrative stress, and disrupted iron metabolism. Targeted lipidomic analysis revealed that phospholipid peroxidation is a crucial mechanism in IAV-induced ferroptosis. Importantly, we identified indoleamine 2,3-dioxygenase 1 (IDO1) as a key regulator of IAV-induced ferroptosis. IDO1 knockdown inhibited IAV-induced cell death, and reduced intracellular reactive oxygen species, peroxynitrite, and inducible nitric oxide synthase expression. Furthermore, pharmacological inhibition of IDO1 with 1-methyl-tryptophan improved ALI phenotype in IAV-infected mice. These findings highlight the critical role of ferroptosis in IAV-induced ALI pathogenesis and identify IDO1 as a potential therapeutic target for the treatment of this life-threatening condition.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.