Yifan Bao , Magdalena Osowiecka , Christiane Ott , Vasiliki Tziraki , Lukas Meusburger , Claudia Blaßnig , Daniela Krivda , Petra Pjevac , Joana Séneca , Matthias Strauss , Christina Steffen , Verena Heck , Soner Aygün , Kalina Duszka , Kevin Doppelmayer , Tilman Grune , Marc Pignitter
{"title":"Dietary oxidized lipids in redox biology: Oxidized olive oil disrupts lipid metabolism and induces intestinal and hepatic inflammation in C57BL/6J mice","authors":"Yifan Bao , Magdalena Osowiecka , Christiane Ott , Vasiliki Tziraki , Lukas Meusburger , Claudia Blaßnig , Daniela Krivda , Petra Pjevac , Joana Séneca , Matthias Strauss , Christina Steffen , Verena Heck , Soner Aygün , Kalina Duszka , Kevin Doppelmayer , Tilman Grune , Marc Pignitter","doi":"10.1016/j.redox.2025.103575","DOIUrl":null,"url":null,"abstract":"<div><div>Olive oil, rich in oleic acid, is often regarded as a healthier alternative to animal fats high in saturated fatty acids and plant oils rich in oxidizable polyunsaturated fatty acids. However, the redox biological implications and health effects of oxidized olive oil (ox-OO) remain underexplored. Our study investigated its impact on lipid metabolism, intestinal and hepatic inflammation, and gut microbiota. Female C57BL/6J mice were fed either a standard normal (NFD), high-fat diet (HFD), an NFD-ox-OO or HFD-ox-OO, in which ox-OO (180 °C heating, 10 min) was the sole lipid source. Inflammation was assessed using macrophage marker F4/80 immunohistochemical (IHC) staining. Gene expression of inflammatory and lipid metabolism markers (IL-10, NF-kBp65, IL-1β, TNFα, TLR4, COX2, PPARα, PPARγ, CPT1a, SCAD, MCAD, LCAD) was analyzed by qRT-PCR. Soluble epoxide hydrolase (sEH) protein expression was measured using IHC. Oxylipin and carnitine profiles were determined by LC-MS/MS. Gut microbiota was analyzed by 16S rRNA sequencing. Ox-OO disrupted redox homeostasis, leading to lipid metabolic dysfunction in the intestines and liver. In the duodenum and proximal jejunum, ox-OO decreased the levels of anti-inflammatory oxylipins and increased pro-inflammatory mediators, leading to inflammation. In the ileum and colon, ox-OO caused lipid metabolic dysregulation and inflammation. Colon inflammation was linked to inhibited mitochondrial β-oxidation and decreased short-chain fatty acid-producing microbiomes. Notably, redox imbalances were further implicated by the identification of 9,10-epoxy-stearic acid, a novel inflammatory lipid mediator oxidized from dietary oleic acid, which upregulated sEH. Ox-OO affects lipid metabolism and may contribute to inflammation in the gut and liver, raising questions about the assumption that olive oil is always beneficial and suggesting possible risks linked to oxidized oleic acid.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103575"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725000886","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Olive oil, rich in oleic acid, is often regarded as a healthier alternative to animal fats high in saturated fatty acids and plant oils rich in oxidizable polyunsaturated fatty acids. However, the redox biological implications and health effects of oxidized olive oil (ox-OO) remain underexplored. Our study investigated its impact on lipid metabolism, intestinal and hepatic inflammation, and gut microbiota. Female C57BL/6J mice were fed either a standard normal (NFD), high-fat diet (HFD), an NFD-ox-OO or HFD-ox-OO, in which ox-OO (180 °C heating, 10 min) was the sole lipid source. Inflammation was assessed using macrophage marker F4/80 immunohistochemical (IHC) staining. Gene expression of inflammatory and lipid metabolism markers (IL-10, NF-kBp65, IL-1β, TNFα, TLR4, COX2, PPARα, PPARγ, CPT1a, SCAD, MCAD, LCAD) was analyzed by qRT-PCR. Soluble epoxide hydrolase (sEH) protein expression was measured using IHC. Oxylipin and carnitine profiles were determined by LC-MS/MS. Gut microbiota was analyzed by 16S rRNA sequencing. Ox-OO disrupted redox homeostasis, leading to lipid metabolic dysfunction in the intestines and liver. In the duodenum and proximal jejunum, ox-OO decreased the levels of anti-inflammatory oxylipins and increased pro-inflammatory mediators, leading to inflammation. In the ileum and colon, ox-OO caused lipid metabolic dysregulation and inflammation. Colon inflammation was linked to inhibited mitochondrial β-oxidation and decreased short-chain fatty acid-producing microbiomes. Notably, redox imbalances were further implicated by the identification of 9,10-epoxy-stearic acid, a novel inflammatory lipid mediator oxidized from dietary oleic acid, which upregulated sEH. Ox-OO affects lipid metabolism and may contribute to inflammation in the gut and liver, raising questions about the assumption that olive oil is always beneficial and suggesting possible risks linked to oxidized oleic acid.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.