Yifan He , Shuai Yu , Xingqing Yan , Jiaran An , Zhenning Fan , Haining Liang , Jianliang Yu
{"title":"Development of a throttling venting model for CO2 pipelines and study of venting characteristics","authors":"Yifan He , Shuai Yu , Xingqing Yan , Jiaran An , Zhenning Fan , Haining Liang , Jianliang Yu","doi":"10.1016/j.psep.2025.106962","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> pipeline venting is essential to mitigate overpressure risks. The design of the venting structure must account for the risk of dry ice blockage caused by CO<sub>2</sub> throttling and its effectiveness in alleviating overpressure in the main pipeline. A comprehensive assessment of the impact of different venting structures on temperature and mass flow rate is necessary. This study uses a one-dimensional throttling model to investigate the effects of various venting structures on pressure, temperature, and mass flow rate. An orthogonal experimental design is applied to quantitatively analyze and compare their impact on low temperature and mass flow rate. The results indicate that flow rate is the fundamental reason for the temperature drop before and after changing the throttle valve. Increasing the number of vent valves, reducing the opening of the final stage valve, and decreasing the diameter of the vent pipe will all raise the temperature of CO<sub>2</sub> within the venting structure. However, the cost of improving low-temperature conditions is to reduce the mass flow rate. Through orthogonal experiments, it has been determined that the diameter of the vent pipe has the most significant impact on the mass flow rate and the extent of temperature reduction, followed by the valve opening, and finally the length of the vent riser. Therefore, in practical operation, the diameter of the ventilation pipe should be carefully selected to balance the risks of low temperature and overpressure.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"196 ","pages":"Article 106962"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025002290","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
CO2 pipeline venting is essential to mitigate overpressure risks. The design of the venting structure must account for the risk of dry ice blockage caused by CO2 throttling and its effectiveness in alleviating overpressure in the main pipeline. A comprehensive assessment of the impact of different venting structures on temperature and mass flow rate is necessary. This study uses a one-dimensional throttling model to investigate the effects of various venting structures on pressure, temperature, and mass flow rate. An orthogonal experimental design is applied to quantitatively analyze and compare their impact on low temperature and mass flow rate. The results indicate that flow rate is the fundamental reason for the temperature drop before and after changing the throttle valve. Increasing the number of vent valves, reducing the opening of the final stage valve, and decreasing the diameter of the vent pipe will all raise the temperature of CO2 within the venting structure. However, the cost of improving low-temperature conditions is to reduce the mass flow rate. Through orthogonal experiments, it has been determined that the diameter of the vent pipe has the most significant impact on the mass flow rate and the extent of temperature reduction, followed by the valve opening, and finally the length of the vent riser. Therefore, in practical operation, the diameter of the ventilation pipe should be carefully selected to balance the risks of low temperature and overpressure.
期刊介绍:
The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice.
PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers.
PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.