Compression performance analysis of hexagonal and re-entrant hybrid honeycomb structures

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Polymer Testing Pub Date : 2025-02-26 DOI:10.1016/j.polymertesting.2025.108745
Xiang Peng , Kaiming Zhou , Yang Han , Weiqiang Jia , Jiquan Li , Shaofei Jiang
{"title":"Compression performance analysis of hexagonal and re-entrant hybrid honeycomb structures","authors":"Xiang Peng ,&nbsp;Kaiming Zhou ,&nbsp;Yang Han ,&nbsp;Weiqiang Jia ,&nbsp;Jiquan Li ,&nbsp;Shaofei Jiang","doi":"10.1016/j.polymertesting.2025.108745","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of honeycomb structures is closely related to the shape of the unit cell, and traditional honeycomb structures with a single design often fail to meet the diverse requirements of various applications. To address this limitation, a hybrid design strategy has been proposed. In this study, we present a novel hybrid honeycomb structure by combining the traditional hexagonal honeycomb with a re-entrant honeycomb configuration, aiming to resolve the trade-off between stiffness and energy absorption capacity. Furthermore, a dual-material hybrid honeycomb structure is designed by replacing polylactic acid (PLA) with polyurethane elastomer (TPU) at key nodes. We perform uniaxial quasi-static compression tests to investigate the compression characteristics, energy absorption properties, and repeatable loading performance of the proposed honeycomb structures. The results demonstrate that the hybrid honeycomb structure exhibits superior stiffness and energy absorption compared to the hexagonal honeycomb, the dual-material hybrid honeycomb structure shows excellent repeatable loading performance. In addition, we conducted parametric research by changing the internal angles and wall thickness of the unit. Therefore, the developed honeycomb structures are capable of meeting a wide range of application scenarios.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108745"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of honeycomb structures is closely related to the shape of the unit cell, and traditional honeycomb structures with a single design often fail to meet the diverse requirements of various applications. To address this limitation, a hybrid design strategy has been proposed. In this study, we present a novel hybrid honeycomb structure by combining the traditional hexagonal honeycomb with a re-entrant honeycomb configuration, aiming to resolve the trade-off between stiffness and energy absorption capacity. Furthermore, a dual-material hybrid honeycomb structure is designed by replacing polylactic acid (PLA) with polyurethane elastomer (TPU) at key nodes. We perform uniaxial quasi-static compression tests to investigate the compression characteristics, energy absorption properties, and repeatable loading performance of the proposed honeycomb structures. The results demonstrate that the hybrid honeycomb structure exhibits superior stiffness and energy absorption compared to the hexagonal honeycomb, the dual-material hybrid honeycomb structure shows excellent repeatable loading performance. In addition, we conducted parametric research by changing the internal angles and wall thickness of the unit. Therefore, the developed honeycomb structures are capable of meeting a wide range of application scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
期刊最新文献
Solvent-free, slow-curing, and corrosion-resistant flame retardant polyurea enabled by a Schiff base latent curing agent and phosphate polyol Evaluation of polymer viscoelasticity by integrated micro-indentation test with optical flow algorithm Identification of microplastics in the aquatic environment, or in the presence of algae Chlorella sp., by comparison of biophotonic methods Fatigue life prediction of polymer matrix composites containing initial delamination using thermography Compression performance analysis of hexagonal and re-entrant hybrid honeycomb structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1