Xiang Peng , Kaiming Zhou , Yang Han , Weiqiang Jia , Jiquan Li , Shaofei Jiang
{"title":"Compression performance analysis of hexagonal and re-entrant hybrid honeycomb structures","authors":"Xiang Peng , Kaiming Zhou , Yang Han , Weiqiang Jia , Jiquan Li , Shaofei Jiang","doi":"10.1016/j.polymertesting.2025.108745","DOIUrl":null,"url":null,"abstract":"<div><div>The performance of honeycomb structures is closely related to the shape of the unit cell, and traditional honeycomb structures with a single design often fail to meet the diverse requirements of various applications. To address this limitation, a hybrid design strategy has been proposed. In this study, we present a novel hybrid honeycomb structure by combining the traditional hexagonal honeycomb with a re-entrant honeycomb configuration, aiming to resolve the trade-off between stiffness and energy absorption capacity. Furthermore, a dual-material hybrid honeycomb structure is designed by replacing polylactic acid (PLA) with polyurethane elastomer (TPU) at key nodes. We perform uniaxial quasi-static compression tests to investigate the compression characteristics, energy absorption properties, and repeatable loading performance of the proposed honeycomb structures. The results demonstrate that the hybrid honeycomb structure exhibits superior stiffness and energy absorption compared to the hexagonal honeycomb, the dual-material hybrid honeycomb structure shows excellent repeatable loading performance. In addition, we conducted parametric research by changing the internal angles and wall thickness of the unit. Therefore, the developed honeycomb structures are capable of meeting a wide range of application scenarios.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108745"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000595","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of honeycomb structures is closely related to the shape of the unit cell, and traditional honeycomb structures with a single design often fail to meet the diverse requirements of various applications. To address this limitation, a hybrid design strategy has been proposed. In this study, we present a novel hybrid honeycomb structure by combining the traditional hexagonal honeycomb with a re-entrant honeycomb configuration, aiming to resolve the trade-off between stiffness and energy absorption capacity. Furthermore, a dual-material hybrid honeycomb structure is designed by replacing polylactic acid (PLA) with polyurethane elastomer (TPU) at key nodes. We perform uniaxial quasi-static compression tests to investigate the compression characteristics, energy absorption properties, and repeatable loading performance of the proposed honeycomb structures. The results demonstrate that the hybrid honeycomb structure exhibits superior stiffness and energy absorption compared to the hexagonal honeycomb, the dual-material hybrid honeycomb structure shows excellent repeatable loading performance. In addition, we conducted parametric research by changing the internal angles and wall thickness of the unit. Therefore, the developed honeycomb structures are capable of meeting a wide range of application scenarios.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.