{"title":"An Emergency Beam Loss Monitoring System Based on Beam Current Transformers for the Linear Accelerator of the DARIA Project","authors":"S. A. Gavrilov, V. A. Gaydash, A. I. Titov","doi":"10.1134/S1027451024701623","DOIUrl":null,"url":null,"abstract":"<p>Beam loss control is one of the critical tasks during the operation of high-intensity charged particle accelerators. The paper presents the concept of a nondestructive beam loss monitoring system based on beam current transformers for a linear resonance proton accelerator of the DARIA compact neutron source. Features of the practical implementation and operation of the proposed beam current transformers based on ferrite cores and the necessary preamplifier electronics using transimpedance amplifiers are considered. Particular attention is paid to the method of monitoring the difference of the measured beam currents between two successive detectors and the principles of generating an alarm signal for the implementation of a fast emergency protection system for the accelerator. Control of the current difference is implemented on the fast integration and mutual comparison of the beam pulses charge passing through the detectors which increases the accuracy of measurements, while it is possible to select several discrete values of the measured difference: for the nominal operating mode and the accelerator tuning procedure, when beam losses can increase significantly. The system works at any beam pulse repetition rate, and to prevent false block from possible interferences, the final alarm signal is generated as the sum of three consecutive signals of the comparison circuit at the beam pulse repetition rate.</p>","PeriodicalId":671,"journal":{"name":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","volume":"18 6","pages":"1623 - 1628"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1027451024701623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Beam loss control is one of the critical tasks during the operation of high-intensity charged particle accelerators. The paper presents the concept of a nondestructive beam loss monitoring system based on beam current transformers for a linear resonance proton accelerator of the DARIA compact neutron source. Features of the practical implementation and operation of the proposed beam current transformers based on ferrite cores and the necessary preamplifier electronics using transimpedance amplifiers are considered. Particular attention is paid to the method of monitoring the difference of the measured beam currents between two successive detectors and the principles of generating an alarm signal for the implementation of a fast emergency protection system for the accelerator. Control of the current difference is implemented on the fast integration and mutual comparison of the beam pulses charge passing through the detectors which increases the accuracy of measurements, while it is possible to select several discrete values of the measured difference: for the nominal operating mode and the accelerator tuning procedure, when beam losses can increase significantly. The system works at any beam pulse repetition rate, and to prevent false block from possible interferences, the final alarm signal is generated as the sum of three consecutive signals of the comparison circuit at the beam pulse repetition rate.
期刊介绍:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques publishes original articles on the topical problems of solid-state physics, materials science, experimental techniques, condensed media, nanostructures, surfaces of thin films, and phase boundaries: geometric and energetical structures of surfaces, the methods of computer simulations; physical and chemical properties and their changes upon radiation and other treatments; the methods of studies of films and surface layers of crystals (XRD, XPS, synchrotron radiation, neutron and electron diffraction, electron microscopic, scanning tunneling microscopic, atomic force microscopic studies, and other methods that provide data on the surfaces and thin films). Articles related to the methods and technics of structure studies are the focus of the journal. The journal accepts manuscripts of regular articles and reviews in English or Russian language from authors of all countries. All manuscripts are peer-reviewed.