From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application

IF 2.3 3区 生物学 Q3 MICROBIOLOGY Archives of Microbiology Pub Date : 2025-03-01 DOI:10.1007/s00203-025-04277-4
Mohamed J. Saadh, Faris Anad Muhammad, Rafid Jihad Albadr, Gaurav Sanghvi, S. Renuka Jyothi, Mayank Kundlas, Kamal Kant Joshi, Surat Gulyamov, Waam Mohammed Taher, Mariem Alwan, Mahmood Jasem Jawad, Ali M. Ali Al-Nuaimi
{"title":"From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application","authors":"Mohamed J. Saadh,&nbsp;Faris Anad Muhammad,&nbsp;Rafid Jihad Albadr,&nbsp;Gaurav Sanghvi,&nbsp;S. Renuka Jyothi,&nbsp;Mayank Kundlas,&nbsp;Kamal Kant Joshi,&nbsp;Surat Gulyamov,&nbsp;Waam Mohammed Taher,&nbsp;Mariem Alwan,&nbsp;Mahmood Jasem Jawad,&nbsp;Ali M. Ali Al-Nuaimi","doi":"10.1007/s00203-025-04277-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV’s genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV’s seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":"207 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-025-04277-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Marburg virus (MARV), a member of the Filoviridae family, is a highly lethal pathogen that causes Marburg virus disease (MVD), a severe hemorrhagic fever with high fatality rates.Despite recurrent outbreaks, no licensed vaccine is currently available. This review explores MARV’s genomic architecture, structural proteins, and recent advancements in vaccine development. It highlights the crucial role of MARV’s seven monocistronic genes in viral replication and pathogenesis, with a focus on structural proteins such as nucleoprotein (NP), glycoprotein (GP), and viral proteins VP35, VP40, and VP24. These proteins are essential for viral entry, immune evasion, and replication. The review further examines various vaccine platforms, including multi-epitope vaccines, DNA-based vaccines, viral vector vaccines, virus-like particles (VLPs), and mRNA vaccines. Cutting-edge immunoinformatics approaches are discussed for identifying conserved epitopes critical for broad-spectrum protection. The immunological responses induced by these vaccine candidates, particularly their efficacy in preclinical trials, are analyzed, showcasing promising results in generating both humoral and cellular immunity. Moreover, the review addresses challenges and future directions in MARV vaccine development, emphasizing the need for enhanced immunogenicity, safety, and global accessibility. The integration of omics technologies (genomics, transcriptomics, proteomics) with immunoinformatics is presented as a transformative approach for next-generation vaccine design. Innovative platforms such as mRNA and VLP-based vaccines offer rapid and effective development opportunities. In this study, underscores the urgent need for a licensed MARV vaccine to prevent future outbreaks and strengthen global preparedness. By synthesizing the latest research and technological advancements, it provides a strategic roadmap for developing safe, effective, and broadly protective vaccines. The fight against MARV is a global priority, requiring coordinated efforts from researchers, policymakers, and public health organizations.

Graphical abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从蛋白质到免疫学:对马尔堡病毒疫苗、机制和应用的全面了解
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of Microbiology
Archives of Microbiology 生物-微生物学
CiteScore
4.90
自引率
3.60%
发文量
601
审稿时长
3 months
期刊介绍: Research papers must make a significant and original contribution to microbiology and be of interest to a broad readership. The results of any experimental approach that meets these objectives are welcome, particularly biochemical, molecular genetic, physiological, and/or physical investigations into microbial cells and their interactions with their environments, including their eukaryotic hosts. Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published. Theoretical papers and those that report on the analysis or ''mining'' of data are acceptable in principle if new information, interpretations, or hypotheses emerge.
期刊最新文献
From protein to immunology: comprehensive insights into Marburg virus vaccines, mechanism, and application Superlative short chain length and medium chain length polyhydroxyalkanoates microbial producers isolated from Malaysian environment Aquirufa esocilacus sp. nov., Aquirufa originis sp. nov., Aquirufa avitistagni, and Aquirufa echingensis sp. nov. discovered in small freshwater habitats in Austria during a citizen science project Development and evaluation of a novel rapid fungal nucleic acid extraction kit The immune response of upper and lower airway epithelial cells to Aspergillus fumigatus and Candida albicans-derived β-glucan in Th17 type cytokine environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1