Bin Liu, Shuai Gong, Jingyi Qiu, Wardah Ejaz, S Thayumanavan
{"title":"Synergistic Effects of Polycationic and Polyfluorinated Functionalities for Efficient Intracellular Protein Delivery.","authors":"Bin Liu, Shuai Gong, Jingyi Qiu, Wardah Ejaz, S Thayumanavan","doi":"10.1021/acs.biomac.4c01795","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular protein therapy is a promising strategy in biologics, including vaccine development, gene editing, and cancer therapeutics. However, protein-based drug delivery remains a significant challenge, particularly in penetrating cell barriers to reach intracellular targets. Inspired by transport adjuvants, we designed a series of polymeric vectors to achieve efficient functional protein trafficking with low cytotoxicity. With an adequate combination of guanidinium and fluorocarbon functionalities, a synergistic improvement of intracellular delivery is achieved in terms of both high intracellular transport and low cellular toxicity. The observed synergistic outcomes highlight new opportunities for delivery vehicle optimizations of intracellular biologics.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01795","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intracellular protein therapy is a promising strategy in biologics, including vaccine development, gene editing, and cancer therapeutics. However, protein-based drug delivery remains a significant challenge, particularly in penetrating cell barriers to reach intracellular targets. Inspired by transport adjuvants, we designed a series of polymeric vectors to achieve efficient functional protein trafficking with low cytotoxicity. With an adequate combination of guanidinium and fluorocarbon functionalities, a synergistic improvement of intracellular delivery is achieved in terms of both high intracellular transport and low cellular toxicity. The observed synergistic outcomes highlight new opportunities for delivery vehicle optimizations of intracellular biologics.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.