{"title":"Enabling Low-Temperature Zinc–Bromine Microbatteries with an Additive-Free Electrolyte Design","authors":"Jiajun Guo, Linyu Hu, Rui Wang, Guoqiang Liu, Jiangqi Zhao, Chunlong Dai, Zifeng Lin","doi":"10.1021/acsnano.5c00988","DOIUrl":null,"url":null,"abstract":"Aqueous zinc–bromine microbatteries (Zn–Br<sub>2</sub> MBs) are promising energy storage devices for miniaturized electronic applications. However, their performance in low-temperature environments remains a challenge due to poor compatibility between antifreeze agents and complexing agents. In this work, we propose an additive-free electrolyte design to address this incompatibility from the source. An electrochemically active 7.5 m zinc bromide solution was found to have a low freezing point of −105 °C, while also inhibiting polybromide dissolution. Zn–Br<sub>2</sub> microbatteries using this electrochemically active electrolyte demonstrated excellent cycling stability, with over 10,000 cycles (99% capacity retention) at 25 °C and more than 2000 cycles (98% capacity retention) at −60 °C. Both experimental data and theoretical calculations demonstrate that low-temperature environments inhibit polybromide dissolution. This work addresses the issue of incompatibility between antifreeze and complexing agents, challenging the traditional reliance on organic complexing agents to prevent polybromide dissolution in Zn–Br<sub>2</sub> systems.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"84 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00988","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous zinc–bromine microbatteries (Zn–Br2 MBs) are promising energy storage devices for miniaturized electronic applications. However, their performance in low-temperature environments remains a challenge due to poor compatibility between antifreeze agents and complexing agents. In this work, we propose an additive-free electrolyte design to address this incompatibility from the source. An electrochemically active 7.5 m zinc bromide solution was found to have a low freezing point of −105 °C, while also inhibiting polybromide dissolution. Zn–Br2 microbatteries using this electrochemically active electrolyte demonstrated excellent cycling stability, with over 10,000 cycles (99% capacity retention) at 25 °C and more than 2000 cycles (98% capacity retention) at −60 °C. Both experimental data and theoretical calculations demonstrate that low-temperature environments inhibit polybromide dissolution. This work addresses the issue of incompatibility between antifreeze and complexing agents, challenging the traditional reliance on organic complexing agents to prevent polybromide dissolution in Zn–Br2 systems.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.