Shahirah Hayati Mohd Salleh , Wan Hanna Melini Wan Mohtar , Khairul Nizam Abdul Maulud , Nuryazmeen Farhan Haron , Nuraziemah Abd Rashid , Nor Aslinda Awang
{"title":"Performance evaluation of high discharge estuarine hydrodynamic model","authors":"Shahirah Hayati Mohd Salleh , Wan Hanna Melini Wan Mohtar , Khairul Nizam Abdul Maulud , Nuryazmeen Farhan Haron , Nuraziemah Abd Rashid , Nor Aslinda Awang","doi":"10.1016/j.asej.2025.103322","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity of physical processes in an estuary provides challenges to develop a functional and reliable model. There is a lack of systematic method in calibrating and validating the model in reducing the time of processing the model which can take a longer time of analysis. This study presents a systematic calibration and validation approach for the TELEMAC-2D hydrodynamic model of a tropical estuary with high river discharge. Key parameters, including tidal prior current speed, time steps, friction coefficient, iteration, velocity diffusivity, and Courant number, were optimized. Model sensitivity analysis was conducted, and the bottom friction was calibrated using the Nikuradse law. The model achieved strong agreement with observation data (R<sup>2</sup> = 0.95, RMSE = 0.17, <em>Ks</em> = 0.32), demonstrating its reliability for simulating tropical estuarine hydrodynamics. This study emphasizes Courant number optimization, enhancing model stability, accuracy, and efficiency for reliable estuarine simulations and informed coastal management.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 4","pages":"Article 103322"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447925000632","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of physical processes in an estuary provides challenges to develop a functional and reliable model. There is a lack of systematic method in calibrating and validating the model in reducing the time of processing the model which can take a longer time of analysis. This study presents a systematic calibration and validation approach for the TELEMAC-2D hydrodynamic model of a tropical estuary with high river discharge. Key parameters, including tidal prior current speed, time steps, friction coefficient, iteration, velocity diffusivity, and Courant number, were optimized. Model sensitivity analysis was conducted, and the bottom friction was calibrated using the Nikuradse law. The model achieved strong agreement with observation data (R2 = 0.95, RMSE = 0.17, Ks = 0.32), demonstrating its reliability for simulating tropical estuarine hydrodynamics. This study emphasizes Courant number optimization, enhancing model stability, accuracy, and efficiency for reliable estuarine simulations and informed coastal management.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.