Quantitation using high-resolution mass spectrometry (HRMS)

IF 1.8 Q4 TOXICOLOGY Toxicologie Analytique et Clinique Pub Date : 2025-03-01 DOI:10.1016/j.toxac.2024.11.007
Stephen Trobbiani
{"title":"Quantitation using high-resolution mass spectrometry (HRMS)","authors":"Stephen Trobbiani","doi":"10.1016/j.toxac.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To provide an overview of the technical differences between triple quadrupole (QQQ), quadrupole-time of flight (QTOF) and orbitrap mass spectrometers, then to provide a commentary on the quantitative performance of each instrument type, with examples from the author's own laboratory.</div></div><div><h3>Discussion</h3><div>QQQ instruments are primarily used in multiple reaction monitoring (MRM) mode in a targeted fashion, meaning compounds are only detected if pre-programmed in the acquisition method. QTOF and orbitrap instruments are commonly used in full scan mode and therefore capture a far larger amount of information, with all ionisable compounds capable of being detected, whether they are targeted or not.</div><div>QTOF spectra are typically composed of hundreds to thousands of individual ion packets, termed transients. The sensitivity of a QTOF method can be increased by summing a greater number of transients at the expense of scan speed. Orbitrap instruments are not affected by this but the resolution increases as a transient spends a longer time in the orbitrap, which reduces the scan speed.</div><div>In an orbitrap instrument, ions are first accumulated in the C-trap before being injected into the orbitrap analyser. To prevent overfilling of the orbitrap, the number of ions injected is controlled at this step. The resulting spectrum is then mathematically adjusted using automatic gain control (AGC) to maintain the quantitative accuracy of the data. AGC can improve the overall dynamic range across different spectra, but it may restrict the simultaneous measurement of very abundant and trace compounds within a single spectrum compared to QTOF instruments.</div><div>All three instrument designs commonly offer excellent precision, but modern QQQ instruments may provide superior sensitivity. The aspects of selectivity most relevant to quantitation are the amount of noise, and the frequency and abundance of interfering peaks from the matrix. It has been the experience of Forensic Science SA that extracted ion chromatograms from LC-QTOF data using appropriately narrow mass extraction windows usually show less noise and fewer interfering matrix peaks than MRM data from LC-QQQ methods.</div><div>Ease of use is subjective and can often be influenced by the experience of a person or the laboratory. Although HRMS instruments still have a reputation as being difficult to set up and use, at Forensic Science SA, most if not all scientists would consider it easier to set up a quantitative method using an LC-QTOF instrument, than determine and optimise MRMs on an LC-QQQ. Troubleshooting mass spectral issues that can affect quantitative results including co-eluting analyte suppression and formation of adducts, dimers and multiply charged ions is much simpler using full scan HRMS data.</div></div><div><h3>Conclusion</h3><div>High-resolution mass spectrometers demonstrate excellent quantitative capabilities in addition to their established screening advantages. While modern high-end QQQ instruments generally offer superior sensitivity and potentially wider linear dynamic ranges than current HRMS instruments, HRMS instruments provide comparable precision and often superior selectivity. Although some specific analyses may benefit from QQQ analysis, HRMS instruments prove suitable for most quantitative applications in forensic toxicology.</div></div>","PeriodicalId":23170,"journal":{"name":"Toxicologie Analytique et Clinique","volume":"37 1","pages":"Page S62"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicologie Analytique et Clinique","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352007824002944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

To provide an overview of the technical differences between triple quadrupole (QQQ), quadrupole-time of flight (QTOF) and orbitrap mass spectrometers, then to provide a commentary on the quantitative performance of each instrument type, with examples from the author's own laboratory.

Discussion

QQQ instruments are primarily used in multiple reaction monitoring (MRM) mode in a targeted fashion, meaning compounds are only detected if pre-programmed in the acquisition method. QTOF and orbitrap instruments are commonly used in full scan mode and therefore capture a far larger amount of information, with all ionisable compounds capable of being detected, whether they are targeted or not.
QTOF spectra are typically composed of hundreds to thousands of individual ion packets, termed transients. The sensitivity of a QTOF method can be increased by summing a greater number of transients at the expense of scan speed. Orbitrap instruments are not affected by this but the resolution increases as a transient spends a longer time in the orbitrap, which reduces the scan speed.
In an orbitrap instrument, ions are first accumulated in the C-trap before being injected into the orbitrap analyser. To prevent overfilling of the orbitrap, the number of ions injected is controlled at this step. The resulting spectrum is then mathematically adjusted using automatic gain control (AGC) to maintain the quantitative accuracy of the data. AGC can improve the overall dynamic range across different spectra, but it may restrict the simultaneous measurement of very abundant and trace compounds within a single spectrum compared to QTOF instruments.
All three instrument designs commonly offer excellent precision, but modern QQQ instruments may provide superior sensitivity. The aspects of selectivity most relevant to quantitation are the amount of noise, and the frequency and abundance of interfering peaks from the matrix. It has been the experience of Forensic Science SA that extracted ion chromatograms from LC-QTOF data using appropriately narrow mass extraction windows usually show less noise and fewer interfering matrix peaks than MRM data from LC-QQQ methods.
Ease of use is subjective and can often be influenced by the experience of a person or the laboratory. Although HRMS instruments still have a reputation as being difficult to set up and use, at Forensic Science SA, most if not all scientists would consider it easier to set up a quantitative method using an LC-QTOF instrument, than determine and optimise MRMs on an LC-QQQ. Troubleshooting mass spectral issues that can affect quantitative results including co-eluting analyte suppression and formation of adducts, dimers and multiply charged ions is much simpler using full scan HRMS data.

Conclusion

High-resolution mass spectrometers demonstrate excellent quantitative capabilities in addition to their established screening advantages. While modern high-end QQQ instruments generally offer superior sensitivity and potentially wider linear dynamic ranges than current HRMS instruments, HRMS instruments provide comparable precision and often superior selectivity. Although some specific analyses may benefit from QQQ analysis, HRMS instruments prove suitable for most quantitative applications in forensic toxicology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
33.30%
发文量
393
审稿时长
47 days
期刊最新文献
Editorial Board Editorial Board Dent versus mèche de cheveux. Quelle matrice utiliser pour documenter une exposition répétée ? À propos d’un cas impliquant l’aripiprazole Urinary tissue inhibitor metalloproteinase-2 and insulin-like growth factor-binding protein-7 as early predictors of the development and prognosis of acute kidney injury in acutely poisoned patients Décès en lien avec des pharmacobézoards : à propos de deux cas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1