{"title":"Longitudinal and vertical evolution of wave-induced turbulence within vegetation","authors":"Yunshuo Cheng , Zhong Peng , Yuan Xu , Ying Zhao , Qing He","doi":"10.1016/j.coastaleng.2025.104737","DOIUrl":null,"url":null,"abstract":"<div><div>Salt marsh vegetation provides essential morphodynamic and ecological benefits in coastal environments, yet the dynamics of wave-induced turbulence within vegetation remain poorly understood. Laboratory experiments are carried out to reveal the longitudinal and vertical evolution of wave-induced turbulence within vegetation for both non-breaking and breaking waves. Data from non-breaking intermediate waves highlights a nonlinear behavior of the longitudinal turbulent intensity across the vegetation, especially with high stem densities. A modified model is developed to account for the competition between increased turbulence scaling and reduced local wave orbital velocity at the leading edge of vegetation. For breaking waves, bubble clouds in video records and measured turbulence intensity together quantify vegetation's crucial role in buffering the vertical evolution of wave-induced turbulence and consequently reducing near-bed turbulence. Findings are crucial for understanding vegetation's role in shaping coastal morphodynamics and maintaining ecosystem health, with broad implications for coastal management and restoration efforts.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"199 ","pages":"Article 104737"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000420","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Salt marsh vegetation provides essential morphodynamic and ecological benefits in coastal environments, yet the dynamics of wave-induced turbulence within vegetation remain poorly understood. Laboratory experiments are carried out to reveal the longitudinal and vertical evolution of wave-induced turbulence within vegetation for both non-breaking and breaking waves. Data from non-breaking intermediate waves highlights a nonlinear behavior of the longitudinal turbulent intensity across the vegetation, especially with high stem densities. A modified model is developed to account for the competition between increased turbulence scaling and reduced local wave orbital velocity at the leading edge of vegetation. For breaking waves, bubble clouds in video records and measured turbulence intensity together quantify vegetation's crucial role in buffering the vertical evolution of wave-induced turbulence and consequently reducing near-bed turbulence. Findings are crucial for understanding vegetation's role in shaping coastal morphodynamics and maintaining ecosystem health, with broad implications for coastal management and restoration efforts.
期刊介绍:
Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.