Transformation of organic matter under anoxic conditions in soils

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2025-03-03 DOI:10.1016/j.scitotenv.2025.178899
S.M. Pyzola, P. Dhakal, M.S. Coyne, J.H. Grove, M.M. Vandiviere, C.J. Matocha
{"title":"Transformation of organic matter under anoxic conditions in soils","authors":"S.M. Pyzola,&nbsp;P. Dhakal,&nbsp;M.S. Coyne,&nbsp;J.H. Grove,&nbsp;M.M. Vandiviere,&nbsp;C.J. Matocha","doi":"10.1016/j.scitotenv.2025.178899","DOIUrl":null,"url":null,"abstract":"<div><div>The transformation of organic matter under anoxic conditions is mediated by hydrolysis and fermentation processes resulting in products such as acetate and hydrogen which are then utilized by microorganisms in respiration. Respiring microorganisms employ an array of electron acceptors in soils, including nitrate, manganese(IV), iron(III), and sulfate, which are consumed depending on availability and decreasing Gibbs free energy yield. The classical view is that respiration is more rapid than fermentation and these two processes do not co-occur, however, evidence has mounted to challenge this view. In addition, it is unclear how the production of ammonium during ammonification of soil organic nitrogen is intertwined with fermentation and respiration. Accordingly, stirred-batch microcosms were incubated to quantify relevant chemical species over time (acetate, nitrate, iron(II), manganese(II), and ammonium) using native terminal electron acceptors (TEAs) and soil organic matter in four soils varying in drainage status under anoxic conditions. The net rate of acetate production in one of the moderately well-drained (Sadler) soils was 1.1 ± 0.07 μmol g<sup>−1</sup> d<sup>−1</sup>, which was similar to Mn(II) accumulation rates (0.95 ± 0.3 μmol g<sup>−1</sup> d<sup>−1</sup>, <em>P</em> = 0.57). A similar trend was observed in the well-drained (Feliciana) soil, indicating that Mn(IV) respiration and fermentation can co-occur in certain soils. In the other moderately well drained and the poorly drained soil, acetate production was suppressed due in part to elevated native nitrate levels, which raised the redox potential and acted as a competitive electron acceptor. Across all four soils, ammonification rates were positively correlated with acetate formation rates (<em>r</em> = 0.88, <em>P</em> &lt; 0.001), suggesting the possibility of amino acid fermentation during these anoxic incubations. These results challenge the current paradigm that the fermentation step in anoxic organic matter decomposition is slow and Mn(IV) respiration is rapid, with implications for organic matter transformations and nutrient cycling.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"970 ","pages":"Article 178899"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725005340","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The transformation of organic matter under anoxic conditions is mediated by hydrolysis and fermentation processes resulting in products such as acetate and hydrogen which are then utilized by microorganisms in respiration. Respiring microorganisms employ an array of electron acceptors in soils, including nitrate, manganese(IV), iron(III), and sulfate, which are consumed depending on availability and decreasing Gibbs free energy yield. The classical view is that respiration is more rapid than fermentation and these two processes do not co-occur, however, evidence has mounted to challenge this view. In addition, it is unclear how the production of ammonium during ammonification of soil organic nitrogen is intertwined with fermentation and respiration. Accordingly, stirred-batch microcosms were incubated to quantify relevant chemical species over time (acetate, nitrate, iron(II), manganese(II), and ammonium) using native terminal electron acceptors (TEAs) and soil organic matter in four soils varying in drainage status under anoxic conditions. The net rate of acetate production in one of the moderately well-drained (Sadler) soils was 1.1 ± 0.07 μmol g−1 d−1, which was similar to Mn(II) accumulation rates (0.95 ± 0.3 μmol g−1 d−1, P = 0.57). A similar trend was observed in the well-drained (Feliciana) soil, indicating that Mn(IV) respiration and fermentation can co-occur in certain soils. In the other moderately well drained and the poorly drained soil, acetate production was suppressed due in part to elevated native nitrate levels, which raised the redox potential and acted as a competitive electron acceptor. Across all four soils, ammonification rates were positively correlated with acetate formation rates (r = 0.88, P < 0.001), suggesting the possibility of amino acid fermentation during these anoxic incubations. These results challenge the current paradigm that the fermentation step in anoxic organic matter decomposition is slow and Mn(IV) respiration is rapid, with implications for organic matter transformations and nutrient cycling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Naturally occurring asbestos in Southern Italy: Geological and mineralogical investigation of fibrous antigorite from Calabrian serpentinites in view of its hazard assessment Does the new European Union air quality directive really protect health? A nationwide case study in Spain Using earth observation to develop a health index for peatlands Transformation of organic matter under anoxic conditions in soils Towards a sustainable viticultural supply chain under uncertainty: Integration of data envelopment analysis, artificial neural networks, and a multi-objective optimization model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1