CPNE7 Regulates Amyloidogenesis Through CAP1-Dependent ADAM10 Translation

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Neurochemistry Pub Date : 2025-03-03 DOI:10.1111/jnc.70026
Jie Yang, Ya-Lan Pu, Qiu-Lin Pan, Lu Wang, Chen-Lu Li, Xiao-Yong Xie, Xue Chen, Xiao-Yun Li, Ding-Qun Bai, Bing-Lin Zhu, Guo-Jun Chen
{"title":"CPNE7 Regulates Amyloidogenesis Through CAP1-Dependent ADAM10 Translation","authors":"Jie Yang,&nbsp;Ya-Lan Pu,&nbsp;Qiu-Lin Pan,&nbsp;Lu Wang,&nbsp;Chen-Lu Li,&nbsp;Xiao-Yong Xie,&nbsp;Xue Chen,&nbsp;Xiao-Yun Li,&nbsp;Ding-Qun Bai,&nbsp;Bing-Lin Zhu,&nbsp;Guo-Jun Chen","doi":"10.1111/jnc.70026","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The accumulation of amyloid plaques is a pathological hallmark of Alzheimer's disease (AD), in which ADAM10, the α-secretase that catalyzes APP and facilitates the non-amyloidogenesis pathway, plays an important role. We have previously reported that the expression of copine-7 (Cpne7) in the hippocampus of APP/PS1 mice is significantly upregulated by nicotine, whereas the potential role of CPNE7 in AD remains largely unknown. Here, we report that CPNE7 protein levels are significantly decreased in APP/PS1 mice and HEK293 cells stably expressing full-length APP. CPNE7 is shown to reduce Aβ levels by favoring ADAM10 activity, and the elevated ADAM10 protein by CPNE7 involves a translational mechanism. Further transcriptome profiling reveals that CPNE7 differentially regulates genes associated with neuronal function. Among these, cyclase-associated actin cytoskeleton regulatory protein 1 (CAP1) is identified as a target gene of CPNE7, which controls ADAM10 translation through binding to the 5′ untranslated region (5′UTR). Collectively, the CPNE7-CAP1 axis could be critical in the amyloidogenic pathway by regulating ADAM10 translation, in which the RNA binding activity of CAP1 is highlighted.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>\n </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnc.70026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The accumulation of amyloid plaques is a pathological hallmark of Alzheimer's disease (AD), in which ADAM10, the α-secretase that catalyzes APP and facilitates the non-amyloidogenesis pathway, plays an important role. We have previously reported that the expression of copine-7 (Cpne7) in the hippocampus of APP/PS1 mice is significantly upregulated by nicotine, whereas the potential role of CPNE7 in AD remains largely unknown. Here, we report that CPNE7 protein levels are significantly decreased in APP/PS1 mice and HEK293 cells stably expressing full-length APP. CPNE7 is shown to reduce Aβ levels by favoring ADAM10 activity, and the elevated ADAM10 protein by CPNE7 involves a translational mechanism. Further transcriptome profiling reveals that CPNE7 differentially regulates genes associated with neuronal function. Among these, cyclase-associated actin cytoskeleton regulatory protein 1 (CAP1) is identified as a target gene of CPNE7, which controls ADAM10 translation through binding to the 5′ untranslated region (5′UTR). Collectively, the CPNE7-CAP1 axis could be critical in the amyloidogenic pathway by regulating ADAM10 translation, in which the RNA binding activity of CAP1 is highlighted.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
期刊最新文献
Preface to the Special Issue “Matrix Metalloproteinases in Health and Disease” Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research CPNE7 Regulates Amyloidogenesis Through CAP1-Dependent ADAM10 Translation Issue Information Microglia-Mediated Synaptic Dysfunction Contributes to Chemotherapy-Related Cognitive Impairment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1