Fragment Energy Distributions in Dissociative Photoionization of SF6 via the X2T1g Ionic State Determined with Threshold Photoelectron-Photoion Coincidence Velocity Imaging and Molecular Dynamics Calculations.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2025-03-01 DOI:10.1021/acs.jpca.4c08301
Yan Chen, Xinlang Yang, Tongpo Yu, Ying Liu, Feng Yu, Shilin Liu, Xiaoguo Zhou
{"title":"Fragment Energy Distributions in Dissociative Photoionization of SF<sub>6</sub> via the X<sup>2</sup>T<sub>1g</sub> Ionic State Determined with Threshold Photoelectron-Photoion Coincidence Velocity Imaging and Molecular Dynamics Calculations.","authors":"Yan Chen, Xinlang Yang, Tongpo Yu, Ying Liu, Feng Yu, Shilin Liu, Xiaoguo Zhou","doi":"10.1021/acs.jpca.4c08301","DOIUrl":null,"url":null,"abstract":"<p><p>Dissociative photoionization of SF<sub>6</sub> in the photon energy range of 15.00-16.50 eV has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. Both the kinetic energy release distribution (KERD) and the angular distribution of the unique fragment ion, SF<sub>5</sub><sup>+</sup>, resulting from dissociation from the SF<sub>6</sub><sup>+</sup>(X<sup>2</sup>T<sub>1g</sub>) ions, were obtained from the TPEPICO time-sliced images. The F-loss potential energy curve and ab initio classical trajectory calculations not only unravel its dissociation mechanism but also declare that the ν<sub>6</sub><sup>+</sup> deformation vibration of the SF<sub>5</sub><sup>+</sup>(<i>D</i><sub>3h</sub>, X<sup>1</sup>A<sub>1</sub>) fragment is predominantly excited. By fitting the total KERD curves derived from the images, we identified the fragment energy distributions. Surprisingly, the average total kinetic energy released in dissociation remains nearly constant within the range of the X<sup>2</sup>T<sub>1g</sub> state. To explain this unusual behavior in such a fast bond-cleavage process, an intramolecular vibrational energy redistribution mechanism is proposed. This mechanism accounts for the rapid energy transfer among vibrational modes prior to complete dissociation. In addition, an adiabatic appearance potential of AP<sub>0</sub>(SF<sub>5</sub><sup>+</sup>/SF<sub>6</sub>) is accurately determined to be 14.145 ± 0.01 eV, which is in excellent agreement with the high-accuracy ab initio calculation results.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c08301","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dissociative photoionization of SF6 in the photon energy range of 15.00-16.50 eV has been investigated using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. Both the kinetic energy release distribution (KERD) and the angular distribution of the unique fragment ion, SF5+, resulting from dissociation from the SF6+(X2T1g) ions, were obtained from the TPEPICO time-sliced images. The F-loss potential energy curve and ab initio classical trajectory calculations not only unravel its dissociation mechanism but also declare that the ν6+ deformation vibration of the SF5+(D3h, X1A1) fragment is predominantly excited. By fitting the total KERD curves derived from the images, we identified the fragment energy distributions. Surprisingly, the average total kinetic energy released in dissociation remains nearly constant within the range of the X2T1g state. To explain this unusual behavior in such a fast bond-cleavage process, an intramolecular vibrational energy redistribution mechanism is proposed. This mechanism accounts for the rapid energy transfer among vibrational modes prior to complete dissociation. In addition, an adiabatic appearance potential of AP0(SF5+/SF6) is accurately determined to be 14.145 ± 0.01 eV, which is in excellent agreement with the high-accuracy ab initio calculation results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
Fragment Energy Distributions in Dissociative Photoionization of SF6 via the X2T1g Ionic State Determined with Threshold Photoelectron-Photoion Coincidence Velocity Imaging and Molecular Dynamics Calculations. Electron Attachment to Nitric Oxide (NO) Controversy. AtomDB: A Python Library and Database for Atomic and Promolecular Properties. Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1