Konstantinos Voudouris, Ben Slater, Lucy G Cheke, Wout Schellaert, José Hernández-Orallo, Marta Halina, Matishalin Patel, Ibrahim Alhas, Matteo G Mecattaf, John Burden, Joel Holmes, Niharika Chaubey, Niall Donnelly, Matthew Crosby
{"title":"The Animal-AI Environment: A virtual laboratory for comparative cognition and artificial intelligence research.","authors":"Konstantinos Voudouris, Ben Slater, Lucy G Cheke, Wout Schellaert, José Hernández-Orallo, Marta Halina, Matishalin Patel, Ibrahim Alhas, Matteo G Mecattaf, John Burden, Joel Holmes, Niharika Chaubey, Niall Donnelly, Matthew Crosby","doi":"10.3758/s13428-025-02616-3","DOIUrl":null,"url":null,"abstract":"<p><p>The Animal-AI Environment is a unique game-based research platform designed to facilitate collaboration between the artificial intelligence and comparative cognition research communities. In this paper, we present the latest version of the Animal-AI Environment, outlining several major features that make the game more engaging for humans and more complex for AI systems. These features include interactive buttons, reward dispensers, and player notifications, as well as an overhaul of the environment's graphics and processing for significant improvements in agent training time and quality of the human player experience. We provide detailed guidance on how to build computational and behavioural experiments with the Animal-AI Environment. We present results from a series of agents, including the state-of-the-art deep reinforcement learning agent Dreamer-v3, on newly designed tests and the Animal-AI testbed of 900 tasks inspired by research in the field of comparative cognition. The Animal-AI Environment offers a new approach for modelling cognition in humans and non-human animals, and for building biologically inspired artificial intelligence.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 4","pages":"107"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-025-02616-3","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Animal-AI Environment is a unique game-based research platform designed to facilitate collaboration between the artificial intelligence and comparative cognition research communities. In this paper, we present the latest version of the Animal-AI Environment, outlining several major features that make the game more engaging for humans and more complex for AI systems. These features include interactive buttons, reward dispensers, and player notifications, as well as an overhaul of the environment's graphics and processing for significant improvements in agent training time and quality of the human player experience. We provide detailed guidance on how to build computational and behavioural experiments with the Animal-AI Environment. We present results from a series of agents, including the state-of-the-art deep reinforcement learning agent Dreamer-v3, on newly designed tests and the Animal-AI testbed of 900 tasks inspired by research in the field of comparative cognition. The Animal-AI Environment offers a new approach for modelling cognition in humans and non-human animals, and for building biologically inspired artificial intelligence.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.