Comparing dynamics, pinning and ratchet effects for skyrmionium, skyrmions, and antiskyrmions.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2025-03-10 DOI:10.1088/1361-648X/adbba6
J C Bellizotti Souza, N P Vizarim, C J O Reichhardt, C Reichhardt, P A Venegas
{"title":"Comparing dynamics, pinning and ratchet effects for skyrmionium, skyrmions, and antiskyrmions.","authors":"J C Bellizotti Souza, N P Vizarim, C J O Reichhardt, C Reichhardt, P A Venegas","doi":"10.1088/1361-648X/adbba6","DOIUrl":null,"url":null,"abstract":"<p><p>We compare the driven dynamics of skyrmions, antiskyrmions, and skyrmionium interacting with random disorder, circular defects, and asymmetric potentials. When interacting with a line defect at a constant drive, skyrmions and antiskyrmions show an acceleration effect for motion along the wall and a drop in velocity when they can cross the barrier. In contrast, skyrmionium travels at a reduced velocity when moving along a wall, and exhibits an increase in velocity once it can cross the barrier. For point defects, skyrmionium can be pinned for a finite fixed period of time, while for skyrmions and antiskyrmions, the Magnus force creates a deflection from the defect and an acceleration effect. For a given drive, skyrmionium moves twice as fast as skyrmions; however, skyrmionium is more susceptible to pinning effects than skyrmions and antiskyrmions. Additionally, there is a critical threshold where the skyrmionium transforms to a skyrmion that is associated with a drop in the velocity of the texture. We show that all three textures exhibit diode and ratchet effects when interacting with an asymmetric substrate, but skyrmions and antiskyrmions show a stronger ratcheting effect than skyrmionium due to the Magnus force.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adbba6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We compare the driven dynamics of skyrmions, antiskyrmions, and skyrmionium interacting with random disorder, circular defects, and asymmetric potentials. When interacting with a line defect at a constant drive, skyrmions and antiskyrmions show an acceleration effect for motion along the wall and a drop in velocity when they can cross the barrier. In contrast, skyrmionium travels at a reduced velocity when moving along a wall, and exhibits an increase in velocity once it can cross the barrier. For point defects, skyrmionium can be pinned for a finite fixed period of time, while for skyrmions and antiskyrmions, the Magnus force creates a deflection from the defect and an acceleration effect. For a given drive, skyrmionium moves twice as fast as skyrmions; however, skyrmionium is more susceptible to pinning effects than skyrmions and antiskyrmions. Additionally, there is a critical threshold where the skyrmionium transforms to a skyrmion that is associated with a drop in the velocity of the texture. We show that all three textures exhibit diode and ratchet effects when interacting with an asymmetric substrate, but skyrmions and antiskyrmions show a stronger ratcheting effect than skyrmionium due to the Magnus force.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Fundamental aspects of Aharonov-Bohm quantum machines: thermoelectric heat engines and diodes. Comparing dynamics, pinning and ratchet effects for skyrmionium, skyrmions, and antiskyrmions. Driving force of atomic ordering in Fe-Pt alloys, investigated by density functional theory and machine-learning interatomic potentials Monte Carlo simulations. Ab initiocalculations of pressure and temperature dependent elastic constants of lead. Large bulk photovoltaic effect and Fermi-surface-mediated enhancement with chemical potential in ZnGeP2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1