High throughput screening identifies potential inhibitors targeting trimethoprim resistant DfrA1 protein in Klebsiella pneumoniae and Escherichia coli.
Soharth Hasnat, Soaibur Rahman, Meherun Binta Alam, Farha Mohi Suin, Farzana Yeasmin, Tanjila Suha, Nahuna Tanjin Supty, Sal Sabila, Animesh Chowdhury, A D A Shahinuzzaman, M Murshida Mahbub, Tofazzal Islam, M Nazmul Hoque
{"title":"High throughput screening identifies potential inhibitors targeting trimethoprim resistant DfrA1 protein in Klebsiella pneumoniae and Escherichia coli.","authors":"Soharth Hasnat, Soaibur Rahman, Meherun Binta Alam, Farha Mohi Suin, Farzana Yeasmin, Tanjila Suha, Nahuna Tanjin Supty, Sal Sabila, Animesh Chowdhury, A D A Shahinuzzaman, M Murshida Mahbub, Tofazzal Islam, M Nazmul Hoque","doi":"10.1038/s41598-025-91410-4","DOIUrl":null,"url":null,"abstract":"<p><p>The DfrA1 protein provides trimethoprim resistance in bacteria, especially Klebsiella pneumoniae and Escherichia coli, by modifying dihydrofolate reductase, which reduces the binding efficacy of the antibiotic. This study identified inhibitors of the trimethoprim-resistant DfrA1 protein through high-throughput computational screening and optimization of 3,601 newly synthesized chemical compounds from the ChemDiv database, aiming to discover potential drug candidates targeting DfrA1 in K. pneumoniae and E. coli. Through this approach, we identified six promising DCs, labeled DC1 to DC6, as potential inhibitors of DfrA1. Each DC showed a strong ability to bind effectively to the DfrA1 protein and formed favorable chemical interactions at the binding sites. These interactions were comparable to those of Iclaprim, a well-known antibiotic effective against DfrA1. To confirm our findings, we explored how the promising DCs work at the molecular level, focusing on their thermodynamic properties. Additionally, molecular dynamics simulations confirmed the ability of these six DCs to effectively inhibit the DfrA1 protein. Our results showed that DC4 (an organofluorinated compound) and DC6 (a benzimidazole compound) exhibited potential efficacy against the DfrA1 protein than the control drug, particularly regarding stability, solvent-accessible surface area, solvent exposure, polarity, and binding site interactions, which influence their residence time and efficacy. Overall, findings of this study suggest that DC4 and DC6 have the potential to act as inhibitors against the DfrA1, offering promising prospects for the treatment and management of infections caused by trimethoprim-resistant K. pneumoniae and E. coli in both humans and animals. However, further in vitro validations are necessary.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7141"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91410-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The DfrA1 protein provides trimethoprim resistance in bacteria, especially Klebsiella pneumoniae and Escherichia coli, by modifying dihydrofolate reductase, which reduces the binding efficacy of the antibiotic. This study identified inhibitors of the trimethoprim-resistant DfrA1 protein through high-throughput computational screening and optimization of 3,601 newly synthesized chemical compounds from the ChemDiv database, aiming to discover potential drug candidates targeting DfrA1 in K. pneumoniae and E. coli. Through this approach, we identified six promising DCs, labeled DC1 to DC6, as potential inhibitors of DfrA1. Each DC showed a strong ability to bind effectively to the DfrA1 protein and formed favorable chemical interactions at the binding sites. These interactions were comparable to those of Iclaprim, a well-known antibiotic effective against DfrA1. To confirm our findings, we explored how the promising DCs work at the molecular level, focusing on their thermodynamic properties. Additionally, molecular dynamics simulations confirmed the ability of these six DCs to effectively inhibit the DfrA1 protein. Our results showed that DC4 (an organofluorinated compound) and DC6 (a benzimidazole compound) exhibited potential efficacy against the DfrA1 protein than the control drug, particularly regarding stability, solvent-accessible surface area, solvent exposure, polarity, and binding site interactions, which influence their residence time and efficacy. Overall, findings of this study suggest that DC4 and DC6 have the potential to act as inhibitors against the DfrA1, offering promising prospects for the treatment and management of infections caused by trimethoprim-resistant K. pneumoniae and E. coli in both humans and animals. However, further in vitro validations are necessary.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.